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Abstract

Time series forecasting holds great relevance across numerous domains, serving
as a vital tool for making informed decisions and predictions based on historical
data. Its applications are diverse, ranging from finance and economics to weather
forecasting and healthcare. Recently, autoregressive diffusion-based methods for
time series forecasting have been proposed, showing great potential in the field.
Diffusion models are deep generative models with an extraordinary ability to
approximate complex and high-dimensional data distributions. Such models have
primarily been employed in tasks like image and video synthesis, and have attracted
considerable interest from the media and the general public due to their generative
power. Current research efforts remain focused on reducing the computational cost
for training and inference while enhancing the generative capabilities of diffusion
models, as well as applying these models to novel problem settings that also
require generative modeling. Therefore, this paper offers an overview of diffusion
models and presents the latest advancements in the field. Additionally, we argue
that diffusion models hold great promise for time series forecasting due to their
autoregressive nature, despite their current performance lagging behind that of the
state-of-the-art. We analyze autoregressive diffusion time series models, exploring
their strengths, limitations, and potential avenues for future research in the field.
By investigating the potential of diffusion models in time series forecasting, we
aim to contribute to the advancement of this field and highlight areas for further
improvement.

1 Introduction

Time series forecasting is a fundamental task in the field of machine learning, with numerous
applications spanning diverse domains such as finance, meteorology, energy management, and
healthcare. In these areas, accurately predicting future values in a time-dependent sequence enables
informed decision-making, resource allocation, and risk mitigation. However, forecasting time series
data poses significant challenges due to the temporal dependencies, non-stationarity and complex
dynamics inherent to most of the modeled processes. Over the years, researchers have explored
various approaches to tackle the time series forecasting problem, including autoregressive models,
recurrent neural networks (RNNs), and ensemble techniques [21, 28, 47, 4, 42, 41, 24, 5, 37, 36, 46].
While these methods have achieved considerable success, they often struggle with capturing long-
range dependencies, handling irregular patterns, and adapting to evolving data distributions.

In recent years, diffusion models have emerged as a promising approach for time series forecasting,
leveraging concepts from statistical physics and stochastic processes. Originally developed to model
diffusion phenomena and random walks, diffusion models have garnered significant attention for their
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Figure 1: Directed graphical model of the forward and reverse diffusion processes as outlined in [17],
illustrated on a sample from the CelebA [26] dataset.

outstanding generative power, achieving impressive results in image and video synthesis [30, 38, 15,
19]. These models offer a flexible framework to capture and sample from complex data distributions
by simulating the motion of particles through a diffusion process. Building upon the foundation
laid by previous research, recent advancements have extended diffusion models specifically for time
series forecasting tasks [36].

Diffusion models for sequence generation and forecasting can be non-autoregressive [22] and autore-
gressive [36]. Non-autoregressive models in general are designed to optimize over the joint probability
distribution of the values in the sequence over a fixed prediction window. While non-autoregressive
models effectively reduce compounding error, as is the case in the current state-of-the-art in time
series modeling [46] with a transformer architecture, it comes at the cost of losing Markovian dy-
namics, which prevents generalization to new trajectories. In contrast, autoregressive approaches are
able to model pairwise transitions and thus capture Markovian dependencies, enabling generalization
to new applications like online decision-making. Therefore, we emphasize autoregressive diffusion
models as powerful and promising tools for time series forecasting.

However, we also highlight two important shortcomings that are preventing autoregressive diffusion
time series models from reaching their full potential:

1. Most autoregressive diffusion models consist of a deterministic RNN state transition model,
followed by a probabilistic diffusion model that acts as the emission or observation model,
as depicted in Fig. 3. Thus, the generative capability of the time series prediction model
is bottlenecked by the RNN, which is known to suffer from vanishing and exploding
gradients [33] despite recent advancements [32]. Furthermore, the RNN state transition
model neglects the probabilistic nature of the problem setting. It is only the powerful
diffusion observation model that recovers stochastic information from perturbed states to
decode them into valid output distributions at each step.

2. Autoregressive diffusion models for sequence forecasting are commonly trained on single-
step objectives due to the prohibitive cost that Langevin sampling and even relaxations
thereof [44, 40] introduce into multi-step objectives. However, at inference, generated
values are fed back as input to the next step, causing a distribution shift with the ground
truth observations used during training. Such a distribution mismatch between training and
inference is known to degrade performance in other architectures, and “overshooting” losses
that balance between single-step and multi-step predictions are often incorporated to address
the issue [12, 11, 13, 14].

For the reasons above, we suggest that autoregressive diffusion time series models will benefit from
architectures that are purely based on the principle of diffusion, where not only output observations
but also internal states are diffused. Moreover, a tractable multi-step diffusion objective needs to be
formulated to better exploit the potential of diffusion models for time series forecasting. Our proposal
is still to be demonstrated in future work.

The remainder of this work is structured as follows: in Section 2, we revise the underlying principles
and mathematical foundations of diffusion models. Section 3 defines the problem of time series
prediction, and we present an overview of the literature in the field, focusing particularly on autore-
gressive methods and diffusion models. We present experimental results in Section 4 and Section 5
concludes the paper and outlines next steps.
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2 Diffusion Models

Denoising diffusion probabilistic models [17, 30] are a class of generative models that have become
the state-of-the-art in several downstream applications, such as image generation [38]. The general
idea is to iteratively remove noise from a multivariate data point. An interpretation of diffusion
modeling is that starting with isotropic noise, we use Langevin dynamics via the gradients of the data
distribution approximated with score matching to sample new points that lie in the lower dimensional
data manifold [45]. The main difficulty lies in the complexity of the data distribution, where even
high-density areas are extremely scarce, especially in the case of high dimensionality.

Consider the D-dimensional data point x0 ∈ RD, which is sampled from the unknown data distribu-
tion q (x) as x0 ∼ q (x). Diffusion models aim to approximate the real data distribution q (x) via the
probability distribution pθ (x), parameterized by θ as a neural network, such that x0 can be sampled
along with new data points. Thus, the model is trained to minimize the negative log-likelihood

L = Ex0∼q(x) [− log (pθ (x0))] . (1)

However, the loss function (1) is intractable, because we define the marginal distribution pθ (x0) over
the data point x0 as

pθ (x0) :=

∫
pθ (x0:K) dx1:K (2)

by integrating the joint probability distribution pθ (x0:K) over the latent random variables x1, . . .xK ,
where xk ∈ RD ∀k ∈ {1, . . . ,K} and K ∈ N. In contrast to other generative deep latent-variable
models, such as variational autoencoders (VAEs, [23]), the posterior probability distribution

q (x1:K | x0) :=

K∏
k=1

q (xk | xk−1)

over the sequence of latents has no learnable parameters. Instead, we obtain the latent variables
by sequentially applying a degradation operation to the original signal x0. The so-called forward
diffusion process consists of a Markov chain that gradually adds Gaussian noise to the input over K
steps with the transition probability distribution

q (xk | xk−1) = N
(
xk;
√
1− βkxk−1, βkI

)
. (3)

The monotonically increasing forward noising schedule β1, . . . βK , where βk ∈ (0, 1) ∀k ∈
{1, . . . ,K}, controls the variance of the noise contamination. Using the reparametrization trick, we
find a closed-form representation to efficiently sample the latent

xk ∼ q (xk | x0) = N
(
xk;

√
ᾱkx0, (1− ᾱk) I

)
(4)

at any step k ∈ {0, . . . ,K} as an interpolation xk =
√
ᾱkx0 +

√
1− ᾱkε between the clean signal

x0 and some fixed Gaussian noise ε ∼ N (0, I) with αk := 1− βk and ᾱk :=
∏t

i=1 αi. Typically,
we design the noising schedule so that ᾱK ≈ 0, by which

q (xK) :=

∫
q (xK | x0) q (x0) dx0 ≈ N (xK ;0, I)

can be assumed to be an isotropic Gaussian for K → ∞. Nichol et al. [30] propose using a fixed
cosine schedule2 with K = 1000 for the forward process. Then, the reverse diffusion process,
described by the joint probability distribution pθ (x0:K) from (2), can also be modeled as a Markov
chain

pθ (x0:K) := p (xK)

K∏
k=1

pθ (xk−1 | xk) (5)

that starts with a sample xK of pure noise drawn from the prior distribution p (xK) = N (xK ;0, I)
as xK ∼ p (xK). Therefore, the network must learn Gaussian transition kernels that approximate the
inverse q (xk−1 | xk) of the forward transitions in (3) as

pθ (xk−1 | xk) := N (xk−1;µθ (xk, k) ,Σθ (xk, k)) . (6)
2Recent work [9, 25] shows that commonly used variance schedules fail at completely removing lower-

frequency information from the clean data point. Unless zero signal-to-noise ratio is enforced at the end of the
forward diffusion process, the reverse process suffers from a distribution shift between the aggregate posterior
q (xK | x0) seen during training and the prior p (xK) used for generation.
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An illustration of the forward and backward pass can be found in Fig. 1. The choice of Gaussian
transitions in (6) is valid as long as βk is kept small [43]. This way, the model needs to learn the
parameters µθ (xk, k) and Σθ (xk, k) of the reverse transition. In this sense, we can approximate the
log-likelihood objective L in 1 via the evidence lower bound (ELBO)

L ≤ LK +

K∑
k=2

Lk−1 + L0 (7)

LK = Ex0∼q(x) [DKL (q (xK | x0) ∥ p (xK))] (8)
Lk−1 = Ex0∼q(x),xk∼q(xk|x0) [DKL (q (xk−1 | xk,x0) ∥ pθ (xk−1 | xk))] ∀k ∈ {2, . . . ,K} (9)

L0 = −Ex0∼q(x),x1∼q(x1|x0) [log (pθ (x0 | x1))] (10)

The term (8) has no learnable parameters θ and is thus ignored during training, although it is close to
zero if the requirement q (xK | x0) ≈ N (xK ;0, I) is fulfilled. Also, (10) represents a variational
reconstruction term. Notably, the forward process posteriors q (xk−1 | xk) become tractable when
conditioned on x0 via Bayes theorem, such that we can use the KL divergence in (9) to compute the
variational gap between pθ (xk−1 | xk) and

q (xk−1 | xk,x0) = N
(
xk−1; µ̃k (xk,x0) , β̃kI

)
,

where the mean µ̃k (xk,x0) and the variance schedule β̃k are given by

µ̃k (xk,x0) :=

√
ᾱk−1βk

1− ᾱk
x0 +

√
αk (1− ᾱk−1)

1− ᾱk
xk, (11)

β̃k :=
1− ᾱk−1

1− ᾱk
βk.

The variance Σθ (xk, k) in the reverse transition kernel (6) can be either fixed [17] to Σθ (xk, k) :=
σ2
t I or made learnable [30]. The mean µθ (xk, k) could be directly predicted, but we obtain better

results by substituting the explicit form of xk from (4) into the formulation of the mean in (11) to
obtain

µθ (xk, k) =
1

√
αk

(
xk − 1− αk√

1− ᾱk
εθ (xk, k)

)
with the neural network εθ (xk, k) that predicts the noise ε present in xk. The ELBO in (7) can
then be reweighted by sampling k from the uniform distribution k ∼ U (1,K) and computing the
denoising term Lk−1 from (9) for k ∈ {1, . . . ,K}, which can be simplified to

Lsimple = Ex0∼q(x),k∼U(1,K),ε∼N (0,I)

[
∥ε− εθ (xk, k)∥2

]
(12)

in the case of fixed variance Σθ (xk, k) := σ2
t I.

The neural network θ is commonly parameterized as a U-Net [39] with self-attention [1, 27]. Rom-
bach et al. [38] propose to denoise the data points in the latent space of a VAE to alleviate the
high computational and time cost of diffusion models both during training and at sampling time.
Moreover, more efficient sampling techniques, modified formulations of the simplified objective,
and distillation approaches have been proposed in [44, 40, 34] and widely adopted by the research
community. Classifier-free guidance [18] has become a popular method to condition diffusion models
on feature vectors, such as CLIP [35] embeddings of text descriptions. The guidance parameter can
be tuned to achieve a balance between perceptual quality of the generations (often measured in terms
of the FID score [16]) and variation between samples. Furthermore, the ControlNet [49] architecture
allows to spatially condition the diffusion model and fine-tune large pre-trained models. There have
been claims made that Gaussian noise is not necessary for denoising diffusion models to work and
that the model can work even with deterministic perturbations [2], showing the robustness of the
diffusion framework. However, non-Gaussian perturbations have been found to hurt the generative
performance both in terms of quality and variability.

3 Autoregressive Probabilistic Time Series Forecasting Models

In this section, we define the problem setting of probabilistic time series forecasting and provide an
overview of autoregressive approaches in the literature.
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3.1 Problem Formulation

LetX = {xt}Tt=1 be a sequence (multivariate time series) of D-dimensional observations xt ∈ RD

of some underlying dynamical process, sampled in discrete time steps t ∈ {1, . . . , T}, where T ∈ N.
In the problem setting of probabilistic time series forecasting, the sequenceX = {Xc,Xp} is split
into two subsequences at time step t0 ∈ N with 1 < t0 ≤ T : the context window Xc := {xt}t0−1

t=1

(also called history or evidence) of length t0 − 1, and the prediction window Xp := {xt}Tt=t0
of

length T − t0 + 1 (also known as prediction horizon). Then, the task is to model the conditional joint
probability distribution

q(xt0:T | x1:t0−1) :=

T∏
t=t0

q(xt | x1:t−1) (13)

over the samples in the prediction window. If we know the distribution in (13), we can sample forecast
prediction sequences given some initial context from the evidence sequence. However, most time-
dependent data generation processes in nature have complex dynamics and no tractable formulation of
q(xt0:T | x1:t0−1). Instead, we generally construct statistical models that approximate the generative
process in (13) and estimate quantiles via Monte Carlo sampling of simulated trajectories. In this
way, confidence levels or uncertainty measures can be calculated, and point forecasts can be produced
as the mean or median trajectory [21].

3.2 Covariates

Often, such statistical models that approximate (13) benefit from manually curated features as
additional input to the observations. A sequence of covariates C = {ct}Tt=1 can be constructed to
help the model recognize seasonal patterns and other temporal dependencies. Covariates may be
composed of lagged inputs, as well as learned embeddings or handcrafted temporal features that
encode information such as the hour of the day or the day of the month, depending on the sampling
rate of the particular time series that is being modeled. Therefore, covariates are known for the
entire interval [1, T ], even at inference. We can easily incorporate covariates into the probabilistic
framework as

q(xt0:T | x1:t0−1, c1:T ) :=

T∏
t=t0

q(xt | x1:t0−1, c1:T ). (14)

The benefit obtained from covariates is highly dependent on the characteristics of both the time
series and the model used, as well as the feature engineering practices followed. In fact, covariates
may even hurt performance under certain circumstances. Usually, designing covariates is a highly
empirical process. Thus, we remind the reader that covariates may optionally be left out of the future
discussion by not using them as a conditioning signal.

3.3 Variational State-space Models

We can model the time seriesX via a latent state-space model [7, 21]:

ht ∼ p(ht | ht−1), (15)
xt ∼ p(xt | ht−1), (16)

where the sequence {ht}Tt=1 of S-dimensional hidden states ht ∈ RS that governs the dynamics
follows the transition model (15), and the observations are generated from the latent states via the
observation model (16). Note that we can update the transition model (15) with the observation xt

and the covariate ct at time step t to obtain an approximate state posterior

q(h1:T | x1:T , c1:T ) =

T∏
t=1

q(ht | ht−1,xt, ct) (17)

via filtering, given some initial state h0. The described variational state-space model is recurrent,
because the state transitions q(ht | ht−1,xt, ct) depend on the previous state ht−1. Furthermore, the
model is also autoregressive, as the output variable xt is fed back as input in the following step.
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Figure 2: Full schematics of the recurrent encoder-decoder. Square nodes indicate deterministic
variables, while circles represent stochastic variables. The generative process is reflected by the solid
arrows.

3.4 Recurrent Encoder-Decoders

One of the most successful approaches for autoregressive sequence-to-sequence prediction has been
the encoder-decoder architecture [4], which consists of an RNN that encodes the history sequence into
an internal state representation that is then decoded by a second RNN into the prediction sequence.
The application of recurrent encoder-decoder networks to time series forecasting was first inspired by
the initial success of the encoder-decoder in neural machine translation [3].

3.4.1 General Formulation

Due to the aforementioned recurrence in the state transition q(ht | ht−1,xt, ct), RNNs have widely
been used in the literature to approximate the filtering state posterior in (17) during the conditioning
phase as a sequential encoder

qψ(h1:t0−1 | x1:t0−1, c1:t0−1) =

t0−1∏
t=1

qψ(ht | ht−1,xt, ct) (18)

with parameters ψ and initial state h0 := 0 without loss of generality. In time series forecasting,
the sequence of evidence {xt}t0−1

t=1 is passed through the RNN sequence encoder (18) to infer the
approximate final context latent ht0−1 that models the internal state of the generative process at the
end of the evidence window at step t0 − 1. The encoding process is thus given by the marginal

qψ(ht0−1 | x1:t0−1, c1:t0−1) =

∫
qψ(h1:t0−1 | x1:t0−1, c1:t0−1) dh1:t0−2. (19)

Then, an unseen sample x̂t0 can be estimated from ht0−1 by sampling from

x̂t ∼ pψ(x̂t | ht−1), (20)

which approximates the observation model (16) as a neural network parameterized byψ. The estimate
x̂t0 is then fed back autoregressively to the transition model to unroll the predictions for further time
steps. Formally, the transition forecasting part of the process is expressed via the recursive decoder3

pψ(ht0−1:T−1 | x1:t0−1, x̂t0:T−1, c1:T−1) =

qψ(ht0−1 | x1:t0−1, c1:t0−1)︸ ︷︷ ︸
Encoder

T−1∏
t=t0

pψ(ht | ht−1, x̂t, ct)︸ ︷︷ ︸
Decoder

, (21)

where x̂t0:T−1 is a trajectory of estimations that we assume to be given by sampling from (20)
for t ∈ {t0, . . . , T − 1}. Importantly, the RNN qψ(ht | ht−1,xt, ct) models the posterior of
the state transitions in the encoder during the context window, while its decoder counterpart

3We omit the prediction of hT , because the final target x̂T can already be estimated from hT−1 with (20).
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pψ(ht | ht−1, x̂t, ct) represents a prior probability during the prediction phase, since only an estima-
tion x̂t is available. Both RNNs do not necessarily need to be the same networks, but it is common
practice to use the same architecture and weights for the two [42]. Finally, we can approximate the
target distribution q(xt0:T | x1:t0−1, c1:T ) from (14) as

qψ(x̂t0:T | x1:t0−1, c1:T ) =∫
pψ(x̂t0:T | ht0−1:T−1)︸ ︷︷ ︸

Observation model

pψ(ht0−1:T−1 | x1:t0−1, x̂t0:T−1, c1:T )︸ ︷︷ ︸
Transition model

dht0−1:T−1, (22)

according to the law of total probability. The unrolling scheme of the probabilistic encoder-decoder
in its general formulation is depicted in Fig. 2.

3.4.2 Deep Learning Methods

Over the last decade, deep learning methods have become the state-of-the-art in time series fore-
casting, as can be concluded from Table 1. Starting with early successes as in [6], neural networks
have become a common way to model the time series prediction problem. Most algorithms follow
a recurrent encoder-decoder architecture and apply different approaches to deal with uncertainty,
inaccuracies, data dimensionality, and long-term dependencies. Given that the encoder-decoder
framework usually involves alternating state transitions from the transition model with output gen-
erations from the observation model, errors can quickly compound. While we use ground truth
observations in the encoding phase, yielding approximate state posteriors, the decoder consumes
previous predictions as input, causing errors to compound during decoding. These errors cause the
states, and ultimately individual outputs or the output trajectory as a whole to fall out of distribution
over time. Thus, research usually focuses on making either the transition or the observation model
(or both simultaneously) more powerful.

As previously indicated, RNNs tend to be the network used to model the state transition model,
due to the recurrence of the state in the problem setting. Specifically, the LSTM [20] and more
recently the GRU [4] have become the RNN architectures of choice, particularly due to their ability
to remember long-range dependencies. Recently, structured deep state-space models [8] have also
shown an outstanding capability to capture long dependencies by following a principled approach
to simulate the state-space model as a deterministic linear time-invariant system. Concurrently, a
simple yet powerful linear recurrent unit has been proposed in [32] that can compete with structured
deep state-space models in long range tasks. Despite their remarkable performance in time series
forecasting and similar problem settings, all these architectures share the problem that they are
entirely deterministic. The state transition probability density function ht ∼ q(ht, | ht−1,xt, ct) is
instead approximated by a deterministic state transition difference equation:

ht = fψ(ht−1,xt, ct),

parameterized by the RNN ψ. Such a state transition function can suffer from mean collapse, where
the average transition is learned. While learning the mean transition might be desirable when the
true transition distribution is nearly a Dirac delta distribution, such as a Gaussian with low variance,
it is problematic when the transition density is more complicated. A simple example could be any
bimodal distribution (or multimodal in the more general case) where the mean value has almost
zero probability (think of a ball falling through a Galton board). In the best case, the deterministic
network could still learn to predict the peak density of the dominating mode, which would still not
be an accurate representation of the true transition distribution. For this reason, Salinas et al. [42]
incorporate a probabilistic RNN architecture that is able to better capture the probabilistic nature
of time series data. Previous works [10, 12] had already formulated either purely stochastic, or
mixed deterministic and probabilistic transition models. Note that the authors additionally design the
observation model in a variational setting as a VAE, instead of using a simple MLP or the transition
RNN itself to produce the outputs. Furthermore, observations are not necessarily decoded with
the observation model at every step, but can be kept in an lower-dimensional intermediate latent
representation for efficiency, and still be fed autoregressively as input to the next step. This line
of work has culminated in the successful Dreamer reinforcement learning agent [11, 13, 14] that
operates with observations in image space. One could easily reformulate the problem setting of world
modeling in reinforcement learning as a time series prediction task by considering actions, rewards,
and observation frames as mere features of the time series measurements xt.
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Figure 3: Unrolling scheme of TimeGrad [36]. Square nodes indicate deterministic variables, while
circles represent stochastic variables. The RNN generative process is reflected by the solid arrows
and the reverse diffusion process by the curved arrows. Dashed arrows imply conditioning signals to
the diffusion model. TimeGrad rolls out the states deterministically via an RNN and decodes them
probabilistically via diffusion.

Finally, time series prediction can also be modeled with autoregressive diffusion models. To date,
TimeGrad [36] is the most performant autoregressive diffusion model. TimeGrad learns to model

q
(
x0
t0:T | x0

1:t0−1, c1:T
)
=

T∏
t=t0

q
(
x0
t | x0

1:t−1, c1:T
)
,

which is an extension of (13) where the superscript refers to the diffusion time step k and the
subscript to the time series time step t. The time dynamics are modeled by an RNN transition model
qψ
(
ht | ht−1,x

0
t , ct

)
in the encoder and pψ

(
ht | ht−1, x̂

0
t , ct

)
in the decoder, and the observation

model is approximated by a diffusion model pψ
(
x̂0
t | ht−1

)
. The unrolling scheme of TimeGrad is

depicted in Fig. 3. At this point, we want to once again highlight the great potential of autoregressive
diffusion models for time series forecasting, if used to model the variational state-space model in its
entirety, and not only the observation model. Limiting the state transitions to an RNN undermines the
probabilistic and multimodal nature of the problem setting, which might require to foresee multiple
futures. As we explained before, the RNN state transitions can collapse towards the mean of the true
transition distribution and produce single-point Dirac state transition approximations that may be out
of distribution. While purely deterministic RNNs can be extender with variational modules to produce
probabilistic transitions, such as via VAEs with Gaussian or categorical transition kernels [11, 13], it
is known that VAEs have limited expressive power and have been recently outperformed by other
generative models (GANs, diffusion models). In the context of modeling highly stochastic state
transitions, VAEs are limited optimistically only by the mismatch between the chosen kernel and the
real transition distribution, or by the quantization error in the case of categorical kernels. Thus, we
suggest that a diffusion would be able to better capture the true time dynamics and ensure that the
trajectory, and not only the individual trajectory tokens, is consistent with the training data. Moreover,
recurrent encoder-decoders that share the same architecture and weights for prior and posterior state
transitions suffer from a distribution shift between the estimate x̂t and the ground truth measurement
xt.

3.5 Non-Recursive Deep Learning Approaches

While the preceding sections delved deeply into the encoder-decoder approach, primarily focusing on
RNN-based models, it is essential to recognize that the landscape of time series prediction is vast and
varied. There exist alternative methodologies that, though not grounded in the encoder-decoder or
even in the state-space paradigm, still offer valuable insights and solutions to the problem at hand.
For the sake of comprehensiveness and to provide a holistic understanding of the available techniques,
this section presents an overview over non-recursive methods. These alternative approaches, while
deviating from our primary modeling strategy, hold their own merits and can be effectively applied to
the time series prediction setting.

Transformers [48] are a family of neural network architectures that leverage the attention mecha-
nism [1, 27] to perform sequence-to-sequence prediction. Recently, transformer-based models have
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caught the interest of the general public due to their remarkable performance in natural language
processing [31]. Although transformers are generally not applied autoregressively, nor do they offer
the flexibility of RNNs that allow for variable-length input and output sequences, the probabilistic
transformer presented in [46] (ProTran) sets the current state-of-the-art in time series modeling,
as can be read from Table 1. The architecture combines a state-space model with a transformer
architecture of hierarchical stochastic variables. The design of the transformer architecture allows
it to attend equally over all elements in the fixed-sized input sequence. Therefore, the transformer
does not suffer from memory loss within its receptive field, in contrast to most RNN architectures.
This argument is used in [46] to claim that ProTran can capture long-term dependencies better than
recurrent models, but no experiment has demonstrated better performance on a dataset that requires
long-range reasoning. One possible explanation is that the length of the context window of the
transformer has a fixed size and cannot be arbitrarily increased, as the computational cost scales
drastically with the number of input tokens.

Another interesting approach to sequence prediction, presented in the context of video prediction, is
that of frame inpainting [15, 19]. Instead of diffusing a single image, one can concatenate subsequent
frames (or frames that follow more flexible or even random schedules) from a video stream for a
fixed-size operating window, selectively mask out certain frames during training, and inpaint the
missing frames. At test time, this process can be rolled out autoregressively to generate hour-long
videos where no single frame falls out of distribution. The authors additionally propose different
schedules with different trade-offs, such as which frames to use from the context window and the
number of time steps to predict ahead. Even though the output at each individual time step is
reasonable, the trajectories a whole are often clearly out of distribution, similar to the claims we make
about TimeGrad [36]. For instance, the predicted video can get stuck for unreasonably long periods
of time on static moments (e.g., car parked at a traffic light), since the model has no sense of state that
encodes waiting times. While such models are restricted to the dynamics present within the operating
window (like transformers), they still enable seemingly infinite unrolling of the sequence prediction.
Furthermore, most video prediction models can be easily adapted to time series by treating individual
frames as time series tokens.

4 Experiments

In this section we briefly present a comparison between some of the presented methods in the setting
of time series forecasting.

4.1 Data sets

The models are evaluated in [36, 46] on the public data sets SOLAR, ELECTRICITY, TRAFFIC, TAXI,
and WIKIPEDIA. These data sets have different dimensionality, domains, sampling frequency, and
capture seasonal patterns of different lengths. The context and prediction windows are also adapted
to each data set, depending on the frequency of the seasonality to be modeled.

4.2 Metric

The Continuous Ranked Probability Score (CRPS) [29] is a scoring function that measures how good
the forecast distribution matches the ground truth distribution:

CRPS(F, x) =

∫
R
(F (z)− I {x ≤ z})2 dz ,

where F (z) is the univariate cumulative distribution function (CDF) over the predicted value, x is
a ground truth observation, and I {x ≤ z} is the indicator function that is one if x ≤ z and zero
otherwise. By summing the D-dimensional time series along the dimension axis for simulated
samples (resulting in F̂sum(t)) and ground truth data (as

∑
i x

0
i,t), we can report the CRPSsum

CRPSsum = Et∼U(t0,T )

[
CRPS

(
F̂sum(t),

∑
i

x0
i,t

)]
as the average over the prediction window. The CDF F̂sum(t) can be estimated via quantiles at each
time step t. The lower the CRPSsum value, the better does the predicted distribution match the data
distribution.
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4.3 Quantitative Results

Table 1: Test set CRPSsum (the lower, the better) of different methods on six time series data sets.
Means and standard deviations are reported for runs with different seeds.

Method Exchange Solar Electricity Traffic Taxi Wikipedia

VES [21] 0.005 ± 0.000 0.900 ± 0.003 0.880 ± 0.004 0.350 ± 0.002 - -
VAR [28] 0.005 ± 0.000 0.830 ± 0.006 0.039 ± 0.001 0.290 ± 0.001 - -
VAR-Lasso [28] 0.012 ± 0.000 0.510 ± 0.006 0.025 ± 0.000 0.150 ± 0.002 - 3.100 ± 0.004
GARCH [47] 0.023 ± 0.000 0.880 ± 0.002 0.190 ± 0.001 0.370 ± 0.001 - -
DeepAR [42] - 0.336 ± 0.014 0.023 ± 0.001 0.055 ± 0.003 - 0.127 ± 0.042
LSTM-Copula [41] 0.007 ± 0.000 0.319 ± 0.011 0.064 ± 0.008 0.103 ± 0.006 0.326 ± 0.007 0.241 ± 0.033
GP-Copula [41] 0.007 ± 0.000 0.337 ± 0.024 0.025 ± 0.002 0.078 ± 0.002 0.208 ± 0.183 0.086 ± 0.004
KVAE [24] 0.014 ± 0.002 0.340 ± 0.025 0.051 ± 0.019 0.100 ± 0.005 - 0.095 ± 0.012
NKF [5] - 0.320 ± 0.020 0.016 ± 0.001 0.100 ± 0.002 - 0.071 ± 0.002
Transformer-MAF [37] 0.005 ± 0.003 0.301 ± 0.014 0.021 ± 0.000 0.056 ± 0.001 0.179 ± 0.002 0.063 ± 0.003
TimeGrad [36] 0.006 ± 0.001 0.287 ± 0.020 0.021 ± 0.001 0.044 ± 0.006 0.114 ± 0.020 0.049 ± 0.002
ProTran [46] - 0.194 ± 0.030 0.016 ± 0.001 0.028 ± 0.001 0.084 ± 0.003 0.047 ± 0.004

The quantitative comparison between a selection of the cited methods can be found in Table 1.
The probabilistic transformer ProTran sets the current state-of-the-art, followed closely by the
autoregressive diffusion model TimeGrad and other transformer architectures like Transformer-MAP.
For reference, the RNN model DeepAR is one of the most widely adopted methods in the field
of time series forecasting. NKF is a normalizing flow with a Kalman Filter, and KVAE is a VAE
that uses a linear state-space to model to describe dynamics. GP-Copula nad LSTM-Copula are
both LSTM models, while GARCH is a multivariate heteroskedastic model. VES is an innovation
state-space model. VAR-Lasso is a multivariate linear autoregressive model like VAR, but with Lasso
regularization.

5 Conclusion

As we have seen, the field of time series forecasting is vast and there are multiple different approaches
to the problem. While traditional research has focused mostly on recurrent models that fit into the
framework of state-space models and the recurrent encoder-decoder architecture, recent works have
explored alternatives such as transformers or diffusion inpainting. Diffusion models can also be used
to model state-space models, but current implementations still still use RNNs for time dynamics. A
tractable multi-step training objective that allows using diffusion models as state transition models is
yet to be formulated.
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