
Operational 3D Mesh
Synthesis with Geometric

and Diffusion Priors
Diego Martí Monsó

Chair of Data Processing
Technische Universität München

Master’s thesis

Operational 3D Mesh Synthesis with
Geometric and Diffusion Priors

Diego Martí Monsó

September 04, 2024

Diego Martí Monsó. Operational 3D Mesh Synthesis with Geometric and Diffusion
Priors. Master’s thesis, Technische Universität München, Munich, Germany, 2024.

Supervised by Prof. Dr.-Ing. Klaus Diepold and Supervisor; submitted on Septem-
ber 04, 2024 to the Department of Electrical and Computer Engineering of the
Technische Universität München.

© 2024 Diego Martí Monsó

Chair of Data Processing, Technische Universität München, 80290 München, Ger-
many, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.or
g/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

Recent advancements in 3D generative frameworks that leverage strong 2D diffu-
sion priors for guidance have shown promise in generating high quality 3D assets
from text prompts. However, established workflows optimize a neural scene repre-
sentation and extract a mesh after convergence via a destructive operation. The
sampled meshes do not meet the quality requirements for use in production en-
vironments because the shape and appearance of the mesh is unrealistic, and
the surfaces have irregular topology and UV mappings. Therefore, we propose
a novel approach that incorporates a geometric prior in the form of a 3D mor-
phable model, resulting in a class-specific generative model capable of producing
production-ready meshes through score distillation sampling. Our method yields
meshes with artist-designed topology, skinning weights, and UVs, as well as re-
alistic shapes and colors, making the meshes immediately suitable for practical
applications. Furthermore, our approach is interpretable and outperforms existing
baselines in terms of text-to-3D mesh alignment.

3

Contents

Abstract 3

1 Introduction 7

2 Related Work 11

3 Preliminaries 15
3.1 3D Meshes . 15

3.1.1 Shape and Structure . 15
3.1.2 Surface Properties . 16
3.1.3 Deformation Primitives . 17

3.2 Diffusion Models . 18
3.2.1 Classifier-free Guidance . 21

3.3 Score Distillation Sampling . 21
3.4 Defining Qualitative Operability Criteria for 3D Meshes 23

3.4.1 Coherence and consistency. 24

4 Method 25
4.1 Overview . 25
4.2 Geometric Prior . 26

4.2.1 3D Morphable Model . 27
4.2.2 Axis-Aligned Bounding Box Clipping 30
4.2.3 Dataset . 32

4.3 Differentiable Renderer . 34
4.4 Diffusion Prior . 36

4.4.1 Classifer-Free Guidance in Score Distillation Sampling . . . 37
4.4.2 Multi-view Consistency . 39

5 Experiments 41
5.1 Experimental Setup and Implementation Details 41
5.2 Multi-view Contrastive Language-Image Pre-Training Similarity Score 42
5.3 Text-to-3D Asset Generation . 44
5.4 Output Editing . 48
5.5 Interchangeability of the Geometric Prior 49
5.6 Interchangeability of the Diffusion Prior 51
5.7 Ablation Study . 51

5

Contents

6 Discussion 55
6.1 Implications . 55
6.2 Limitations and Future Work . 56
6.3 Ethics . 58

7 Conclusion 59

8 Appendix 61
8.1 Analysis of the Shape Space Constrained by the Axis-Aligned

Bounding Box . 61
8.2 Derivation of the Score Distillation Sampling Decomposition 62
8.3 Extended Results . 64

6

1 Introduction

In today’s digital era, 3D content is the backbone of innovation across industries
such as gaming, film, virtual reality, architecture, and product design, driving both
creativity and technological advancement. Despite the undeniable importance of
3D content in these fields, the process of creating high-quality 3D models remains a
formidable challenge. Traditional methods of 3D model creation are not only tech-
nically demanding but also resource-intensive, often requiring a combination of
artistic talent, deep technical knowledge, and extensive time commitments. For in-
stance, creating a detailed 3D model from scratch typically involves stages such as
conceptualization, sculpting, topology refinement, texturing, rigging, and rendering.
Each part of the process can take weeks or even months to complete. These com-
plexities make 3D content creation largely inaccessible to non-professional users.
In addition, there is growing pressure on 3D content creators to deliver sophis-
ticated 3D content quickly and cost-effectively, as audiences and consumers in-
creasingly expect high-quality visuals and interactive experiences. Thus, we iden-
tify the need for automated systems capable of generating production-ready 3D
content from simple inputs, such as text descriptions or reference images.
The task of automatically generating 3D models has been a topic of computer vision
and graphics research for decades [40]. The goal is to learn a predictive model that
maps an input text prompt to an output mesh that is operational for downstream in-
dustrial applications, i.e., the mesh is ready to be used in production environments
without additional human intervention. The core challenge lies in ensuring that the
generated 3D models satisfy a set of structural requirements concerning predomi-
nantly the geometry, topology, texture coordinates, and rigging that are needed for
the mesh to be ready for production. For instance, an operational model would not
only feature accurate geometry but also have quadrangular topology optimized for
deformation, UV mapping that avoids visible texture seams, and skinning weights
that allow for realistic pose control. However, these conditions are hard to formalize
due to the subjective nature of artistic requirements and the technical diversity of
production environments, which complicate the development of universal metrics
for production-readiness. Not only artistic considerations such as style or consis-
tency play a role, but also technical factors like hardware or the rendering engine
may have great influence. Due to the lack of a formalization of artistic and tech-
nical requirements or concrete metrics to optimize for, most research efforts focus
instead on improving the perceptual quality of the synthesized 3D assets when ren-
dered as an image [26, 40, 41, 43, 44, 56, 67, 71, 73, 75].

7

1 Introduction

Figure 1.1: We present a class-specific text-to-3D generative model that produces meshes
that are operational for industrial application without requiring additional human interven-
tion. At the core of our method lies a 3d morphable model that acts as a geometric prior,
which regularizes the topology and the UVs of the mesh, as well as the distribution of
shapes. We sample novel meshes via score distillation sampling through a differentiable
renderer. For supervision, we leverage a pre-trained multi-view diffusion prior.

These concurrent works predict a 3D model parameterized as a neural scene rep-
resentation, commonly a Neural Radiance Field (NeRF) [50] or Gaussian Splat-
ting [32]. Then, the surface mesh is extracted from the volume via algorithms
based on marching cubes or marching tetrahedra [46, 65, 66, 72]. While neu-
ral representations excel at rendering high-quality images differentiably and can
potentially capture the spatial structure of a figure up to an interpolation error (and
the later discretization error introduced by the mesh extraction step), the sampled
shapes suffer from artifacts such as fused mesh components, high genus, the
Janus problem, or content drift [44, 67]. Moreover, the topological structure of the
mesh – and, by extension, all features attached to the topology, like UVs and rigs –
is lost. Therefore, some recent works [77] aim to recover a topological landscape
of the mesh graph that is more favorable for production settings by post-processing
the extracted mesh with retopology and atlasing algorithms [17]. Nevertheless, the
benefit is hard to quantify.
To address the research gap of automatically generating operational 3D meshes,
we propose a novel class-specific generative model that allows to program the
aforementioned structural properties of the output mesh at design time of the algo-
rithm. We introduce a geometry prior that offers a practical guarantee that the syn-
thesized mesh is operational for industrial applications. Additionally, the geometry
prior regularizes the shape space to remain close to the manifold of valid shapes.
Furthermore, we employ a pre-trained diffusion prior for guidance via score distilla-

8

tion sampling (SDS) [56]. Thus, our generative model can be adapted to new asset
classes without retraining. We also provide a comprehensive qualitative definition
of the basic surface attributes that 3D meshes must meet in order to be viable for
mainstream industrial applications. Finally, we benchmark our approach against
state-of-the-art methods, achieving higher quantitative scores on multi-view align-
ment between the input prompt and the sampled mesh. An overview can be seen
in Fig. 1.1.
At its core, our method consists of three differentiable components that allow to
sample an operational mesh as a gradient-based optimization of a parametric
mesh model. Firstly, we construct the geometric prior as a 3D morphable model
(3DMM) [14] from our own curated dataset of mesh blend shapes. We also show
that our general framework is in principle compatible with other 3DMMs, such as
the ICT FaceKit [39]. Secondly, we build a differentiable renderer as a combination
of a differentiable rasterizer [37] for mesh rasterization and Instant-NGP [52] for
RGB interpolation. Lastly, we use Stable Diffusion [58] as our pre-trained diffusion
prior, which acts as a critic to supervise the optimization process of the mesh via
gradient descent.

9

2 Related Work

The field of 3D generation has seen remarkable advancements over the past
decade, driven primarily by the success of generative AI in images and videos [24,
53, 58]. These advancements have led to the development of high-quality and di-
verse 3D models that are essential for applications in video games, movies, virtual
reality, and other immersive experiences. Following [40], the field of 3D generation
can be broadly divided into several key areas: (i) the 3D representations that are
used; (ii) the generative models, which range from feedforward generation (e.g.,
GANs [15]), optimization-based generation with CLIP [30, 57] like [25], procedural
generation (commonly used for natural environments like terrains or plant struc-
tures), to novel view synthesis, which is the backbone of our method; and (iii) the
datasets.
In our literature review, we focus on novel view synthesis approaches that use 2D
diffusion models. The advantage of using pretrained image diffusion models for
3D generation is that the model can leverage large-scale image datasets such as
LAION-5B [63], which consists of over 5 billion image-text pairs. Generative mod-
els rely heavily on the availability of large datasets to be trained on, and common
3D datasets such as ShapeNet [9] or Objaverse-XL [13], with around 50 thousand
and 10 million assets each, are orders of magnitude smaller than their image coun-
terparts. Besides, there is less stylistic or structural consistency in 3D datasets and
there is a lack of labeled data. Models that build on the LRM [26, 73] have recently
shown success in image-to-3D synthesis. These models do not take text prompts
as input because there is not enough labeled 3D data to train on.
DreamFusion [56] originally demonstrates 3D synthesis from a text prompt via
score distillation sampling (SDS) with pretrained diffusion models. The Dream-
Fusion algorithm initializes a NeRF randomly and then samples random views it-
eratively. The NeRF renderings are noised and fed as input to the SDS loss with
the pre-trained Imagen model [60] at 64 × 64 resolution as the backbone. The
neural representation is then optimized via gradient descent. As a last step, a
mesh can be extracted from the synthesized NeRF via Marching Cubes [46, 66],
Marching Tetrahedra [65], or algorithms that rely on different sets of heuristics like
Nerf2Mesh [72]. For more details about SDS, please refer to 3.3.
After DreamFusion, several works have built upon the SDS framework and further
explored the SDS objective to propose modifications that aim to improve perfor-
mance and decrease generation time incrementally. Usually, these changes affect
either the scene representation under optimization, the architecture of the diffu-

11

2 Related Work

sion model, or the objective formulation itself. We discuss these approaches in the
following.

Modifications to the scene representation under optimization. NeRFs [50]
are known to be expensive to sample via volume rendering, and also require many
iterations to converge. Therefore, researchers have explored combining SDS with
a variety of 3D representations, such as NeRFs and variants like mip-NeRF [7,
16, 30, 43, 50, 56, 75], TriPlanes [26, 73], multi-resolution hash encodings [41,
52, 67], or Gaussian Splatting [32, 71] as their 3D representation to accelerate
the synthesis of 3D objects from a text prompt. We highlight for example the case
of DreamGaussian [71], which leverages the recent breakthrough of 3D Gaussian
Splatting [32] to achieve faster rendering and convergence in less iterations. How-
ever, DreamGaussian lacks the visual quality that concurrent methods achieve with
NeRF.
Regardless of the choice, no neural 3D representation is aware of the mesh surface
geometry (i.e., the topology). We thus choose a 3DMM [14] as our 3D shape repre-
sentation, as 3DMMs allow to pre-define the topology of the output mesh. For the
mesh color, we use the efficient InstantNGP [52], which is also used by other works
like [41, 67], allowing for fast iterations when combined with the NVDiffRast raster-
izer [37]. We are not the first work to optimize over meshes. Magic3D [41] proposes
a two-stage optimization approach, where a mesh is extracted from an optimized
InstantNGP in the first step, and iteratively refined via SDS in the second part. Nev-
ertheless, the extracted mesh still has the usual artifacts of isosurface extraction
algorithms [46] and the mesh refinement stage does not modify the topology or
the genus of the mesh. Similar to us, AvatarCLIP [25] and DreamWaltz [28, 29]
also realize that a 3DMM can be used as a shape prior to guide the SDS process
to a mode, allowing to converge to more realistic shapes. However, both meth-
ods either perform destructive operations on the mesh or use the 3DMM only to
regularize the space of a neural field.

Modifications to the architecture of the diffusion model. One recent line of
research focuses on adapting the architecture of the diffusion prior to better suit
the SDS loss. While SDS is effective at providing optimization guidance from a
pre-trained 2D diffusion network to some 3D scene, the SDS objective suffers from
information loss at every iteration due to the locality of the rendering process. The
diffusion model is trained in image space and can thus only operate on a lossy pro-
jection of the 3D scene to the 2D image plane. For instance, when denoising the
front view of a scene, the model is unaware of all the occluded parts of the scene
(such as the back view). Furthermore, the information loss caused by the pro-
jection step also affects the backpropagation step, which only updates the scene
locally where components of the scene contribute to the rendering. Therefore, ar-

12

Albedo Shape Wireframe
D

re
am

Fu
s.

M
ag

ic
3D

M
VD

re
am

(a) Rendering of the extracted
mesh from a frontal view.

Albedo Normal Density

(b) Volume rendering from a
frontal perspective.

Albedo Normal Density

(c) Volume rendering at a 24º
azimuth angle.

Figure 2.1: We sample the prompt “A bust of Julius Caesar” from DreamFusion [56] (first
row), Magic3D [41] (second row), and MVDream [67] (third row). In Fig. 2.1a, we show that
the extracted meshes have irregular surfaces and topology. We illustrate the underlying
volume representation that encodes the 3D asset as a cloud of color in Figs. 2.1b and 2.1c.
Here, we observe the Janus problem and content drift when slightly rotating the camera for
Magic3D, as well as oversaturated colors for MVDream. Moreover, the uneven distribution
of the density is responsible for the unsmooth surfaces of the extracted mesh, along with
the holes and floating blobs of material.

tifacts like the Janus problem and content drift become common. In Fig. 2.1, we
explore these effects for three baselines: DreamFusion [56], Magic3D [41], and
MVDream [67].
Many methods have emerged that aim to finetune a pre-trained diffusion model,
with modifications to the architecture of the U-Net [59], to become pose-aware
and multi-view consistent. Most notably, MVDream [67] expands the 2D self-
attention [3, 49] of StableDiffusion [58] to achieve multi-view diffusion. Similar to
Zero-123 [43] and Zero-123-XL [13], the network is trained and multi-view render-
ings of 3D assets.
Multiview consistent diffusion models greatly improve visual quality of the sampled
3D models, as is evidenced in Fig. 2.1. Still, the synthesized 3D scenes are still
not entirely multi-view consistent, which can be attributed mainly to two reasons.
Firstly, the multiple views that are denoised together at every iteration do not cover
the entire visible surface of the 3D model. For example, SyncDreamer [44] and MV-
Dream independently propose different sampling strategies to cover the surface of
the 3D asset by sampling around the azimuth range with different elevations. But
any projection of the 3D model to 2D planes is prone to leave certain visible gaps to
the diffusion model, unless we sample with a very high density. Secondly, despite
the improved consistency across different views, the modified diffusion model itself
is still not entirely multiview consistent, leading to artifacts that can accumulate over
SDS iterations. With architectural and training improvements driven by video dif-

13

2 Related Work

fusion models [10, 24], recent methods like Cat3D [16] have achieved single-step
reconstruction of a 3D representation without the need for SDS. The weights of the
model that they train are not publicly available.
Based on these observations, we opt to use the multi-view architecture provided by
MVDream [67]. In our case, we circumvent the aforementioned problems caused
by the locality of each SDS iteration by optimizing a scene representation that is
globally 3D consistent. Specifically, gradient updates to a localized subset of scene
components affect the scene parameterization globally in a way that is geometri-
cally consistent according to the shape prior that is defined by a 3DMM [14].

Alternative formulations of the SDS objective. ProlificDreamer [75] introduces
the concept of variational score distillation sampling (VSD), which is a particle-
based approach where several SDS optimizations are run in parallel in a varia-
tional framework. While VSD greatly improves the generation quality, it has not
seen widespread adoption due to the high cost of running SDS in a particle-based
simulation. Other methods such as Perp-Neg [2], Delta Denoising Score [20], and
LMC-SDS [1] provide alternative formulations of the SDS objective that have not
either become the standard in SDS research due to increased generation times
and limited improvement. Nevertheless, we take inspiration from their analysis to
justify some of the choices that we make. Recently, Lukoianov et al. [48] demon-
strate that SDS is similar to a high-variance version of Denoising Diffusion Implicit
Models (DDIM) [69], which is a popular scheduler to sample from diffusion mod-
els in few steps. Thus, the authors derive a new formulation of SDS that shows
great promise in improving the perceptual quality of neural fields sampled via SDS,
although the algorithm is also considerably more costly than vanilla SDS.

We focus on single verticals of 3D generation. In contrast to previous meth-
ods, we do not aim to sample from the entire distribution 3D assets that have been
scraped from the internet and put into large datasets like Objaverse-XL [13] and
ShapeNet [9], or that can be derived from image datasets like Laion [63]. In-
stead, we focus on solving the entire vertical of synthesizing high-quality, oper-
ational meshes for single asset classes. We use our own proprietary dataset of 3D
meshes, which has been curated to meet strict quality and consistency standards,
while still leveraging MVDream [67] as a diffusion prior that has been pre-trained
on large-scale image and 3D datasets.

14

3 Preliminaries

We introduce some of the preliminary concepts that are needed for the later dis-
cussion. In Sec. 3.1, we provide an overview of 3D meshes and their relevant at-
tributes. Then, we provide a tutorial about diffusion models in Sec. 3.2. We present
the concept of SDS in Sec. 3.3 and provide an overview of the criteria needed for
a mesh to be operational in Sec. 3.4.

3.1 3D Meshes

In this section, we provide a mathematical definition of the components that com-
pose three-dimensional (3D) meshes. A mesh is a polyhedral representation of
the surface of an object. As such, the mesh offers a high degree of flexibility and
can be extended arbitrarily with additional components that can describe physi-
cal or even semantic properties of the modeled objects. Here, we focus on the
parts of a mesh that are widely adopted and used in the entertainment sector to
produce Computer-Generated Imagery (CGI). We present a general description of
the 3D mesh that is compatible with standard mesh data structures, file formats,
mesh processing algorithms, and rendering and shader pipelines. In Section 3.4,
we discuss the properties that a mesh needs to satisfy to be operational for down-
stream applications in the entertainment industry.

3.1.1 Shape and Structure

Geometry. The geometry of the mesh is the cornerstone of the 3D mesh archi-
tecture, dictating the spatial manifestation of the modeled objects. Let 𝑽 be the
vertex matrix such that 𝑽 ∈ R𝑁×3, where each row 𝒗𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) represents the
coordinates of the 𝑖-th vertex in three-dimensional space, for 𝑖 = 1, . . . , 𝑁 . Practi-
cally, 𝑽 represents a point cloud.

Topology. The topology describes how these vertices interconnect, effectively
controlling the deformation characteristics and structural integrity of the mesh. Let
𝑬 be the edge matrix such that 𝑬 ∈ {1, . . . , 𝑁}𝑀×2, where each row 𝒆𝑘 = (𝑣1𝑘 , 𝑣2𝑘)
contains indices 𝑣1𝑘 and 𝑣2𝑘 of𝑽, denoting the two vertices that form the 𝑘-th edge,
for 𝑘 = 1, . . . , 𝑀. Equivalently, the connectivity of the mesh is also represented by
the face matrix 𝑭 such that 𝑭 ∈ {1, . . . , 𝑁}𝑃×3, where each row 𝒇𝑙 = (𝑣1𝑙 , 𝑣2𝑙 , 𝑣3𝑙)

15

3 Preliminaries

consists of vertex indices 𝑣1𝑙 , 𝑣2𝑙 , 𝑣3𝑙 of 𝑽, delineating the vertices that define the
𝑙-th triangular face1, for 𝑙 = 1, . . . , 𝑃.

3.1.2 Surface Properties

Materials. Every face in 𝑭 has one material assigned to it. A material in 3D
graphics is a collection of properties that determine how a set of faces on a mesh
will appear when rendered. These properties define the color and how the surface
interacts with light. Common material properties can include:

• Albedo (Diffuse): The base color of the material.

• Specularity: How shiny the surface is and the color of its shine.

• Roughness: How rough or smooth the surface is, affecting how sharp or
diffuse the reflections are.

• Metalness: Whether the surface behaves more like a metal or a non-metal.

• Transparency: How transparent the surface is.

• Emission: Whether the surface emits light.
A material is tied to a shader, which is a program that runs on the graphics hardware
to actually render the surface with all its defined properties.

Texture maps. Each of the properties in the material can be controlled by a tex-
ture map, which allows for more complex and varied surface appearances than
could be achieved with uniform values alone. Texture maps are 2D images that
provide spatially varying information to the shaders to control specific properties of
the material across the surface of a 3D object. Depending on the material property,
the texture map might be stored either as a grayscale or as an RGB image.

UV coordinates. Texture maps are linked to the surface through UV coordinates,
which tell the shader how to wrap the 2D texture data onto the 3D surface in a
process known as UV mapping. Let 𝑾 be the UV coordinate matrix such that 𝑾 ∈
[0, 1]𝑁×2, where each row 𝒘𝑝 = (𝑢𝑝, 𝑣𝑝) represents the 2D texture coordinates of
the 𝑝-th point in UV space, for 𝑝 = 1, . . . , 𝑄, where the number of UV coordinates
𝑄 is greater or equal to the number of vertices 𝑁 (i.e., 𝑄 ≥ 𝑁). In the simplest
case, where 𝑄 = 𝑁 , there is one UV coordinate per vertex.

1Note that faces in a mesh can be modeled as any planar polygon of degree greater than 2, such
as quadrangles, which are prevalent in applications requiring mesh deformations. However, we
assume triangular faces in this context, since any mesh can be reversibly triangulated. Trian-
gular faces offer the advantage of guaranteed planarity, simplifying the mathematical modeling
and rendering processes while ensuring stability and compatibility across different 3D graphics
systems.

16

3.1 3D Meshes

Vertex texture coordinate indices. However, it is often the case that one vertex
is mapped to different UV coordinates if that vertex is indexed by multiple faces.
In this case, there are more UV coordinates than there are vertices, i.e., 𝑄 > 𝑁 ,
which is especially useful to avoid visible seams when UV mapping a texture that
contains texture islands. We denote the texture coordinate index matrix as 𝑻 such
that 𝑻 ∈ {1, . . . , 𝑄}𝑃×3, where each row 𝒕𝑙 = (𝑤1𝑙 , 𝑤2𝑙 , 𝑤3𝑙) contains indices of
𝑾, corresponding to the texture UV coordinates associated with the vertices of the
𝑙-th face in the mesh, for 𝑙 = 1, . . . , 𝑃.

UDIM tiles. A UDIM system is a collection of several 2D texture spaces (tiles),
each identified by a unique index. The UDIMs extend the traditional single UV
tile system by mapping UV coordinates across multiple tiles, increasing texture
resolution and detail. In a UDIM setup, the UV coordinates are redefined to a
larger range 𝑾UDIM ∈ [0,∞)𝑁×2 that spans multiple texture tiles. The tile number
for each UV coordinate is given by:

Tile Index = 1001 +
⌊
𝑢𝑝

⌋
+ 10

⌊
𝑣𝑝

⌋
where ⌊·⌋ denotes the floor function, which maps the decimal UV coordinates into
integer indices corresponding to specific texture tiles. Here, 1001 is the starting
index for the first tile.

3.1.3 Deformation Primitives

Rigging. A mesh can can be animated via rigging, which is the process of assign-
ing a hierarchical skeletal structure of bones to the mesh. Then, a set of skinning
weights is defined on to control how much each bone influences the position of
each vertex in the mesh. The deformation is commonly computed via linear blend
skinning or dual quaternion skinning [31].

Blend shapes. Alternatively (or in combination with the rig), a mesh can also
be animated via blend shapes or morphs, which are meshes that share the same
topology. Blend shapes are often useful to control detail in animations, for exam-
ple around facial animation, where a skeletal rig would not be suited for practical
considerations.

Physical properties. Other physical surface properties can be defined to de-
form the mesh via physics simulation. This can include vertex attributes such as
the mass or restitution coefficients, as well as information that is used to compute
collisions.

17

3 Preliminaries

3.2 Diffusion Models

Denoising diffusion probabilistic models [22, 53] are a class of generative models
that have become the state-of-the-art in several downstream applications, such
as image generation [58]. The general idea is to iteratively remove noise from a
multivariate data point. An interpretation of diffusion modeling is that starting with
isotropic noise, we use Langevin dynamics via the gradients of the data distribu-
tion approximated with score matching to sample new points that lie in the lower
dimensional data manifold [70]. The main difficulty lies in the complexity of the data
distribution, where even high-density areas are extremely scarce, especially in the
case of high dimensionality.
Consider the 𝐷-dimensional data point x0 ∈ R𝐷 , which is sampled from the un-
known data distribution 𝑞 (x) as x0 ∼ 𝑞 (x). Diffusion models aim to approximate
the real data distribution 𝑞 (x) via the probability distribution 𝑝𝜽 (x), parameterized
by 𝜽 as a neural network, such that x0 can be sampled along with new data points.
Thus, the model is trained to minimize the negative log-likelihood

L = Ex0∼𝑞 (x) [− log (𝑝𝜽 (x0))] . (3.1)

However, the loss function (3.1) is intractable, because we define the marginal
distribution 𝑝𝜽 (x0) over the data point x0 as

𝑝𝜽 (x0) :=
∫

𝑝𝜽 (x0:𝐾) dx1:𝐾 (3.2)

by integrating the joint probability distribution 𝑝𝜽 (x0:𝐾) over the latent random vari-
ables x1, . . . x𝐾 , where x𝑘 ∈ R𝐷 ∀𝑘 ∈ {1, . . . , 𝐾} and 𝐾 ∈ N. In contrast to
other generative deep latent-variable models, such as variational autoencoders
(VAEs, [35]), the posterior probability distribution

𝑞 (x1:𝐾 | x0) :=
𝐾∏
𝑘=1

𝑞 (x𝑘 | x𝑘−1)

over the sequence of latents has no learnable parameters. Instead, we obtain
the latent variables by sequentially applying a degradation operation to the origi-
nal signal x0. The so-called forward diffusion process consists of a Markov chain
that gradually adds Gaussian noise to the input over 𝐾 steps with the transition
probability distribution

𝑞 (x𝑘 | x𝑘−1) = N
(
x𝑘 ;

√︁
1 − 𝛽𝑘x𝑘−1, 𝛽𝑘I

)
. (3.3)

The monotonically increasing forward noising schedule 𝛽1, . . . 𝛽𝐾 , where 𝛽𝑘 ∈
(0, 1) ∀𝑘 ∈ {1, . . . , 𝐾}, controls the variance of the noise contamination. Using

18

3.2 Diffusion Models

the reparametrization trick, we find a closed-form representation to efficiently sam-
ple the latent

x𝑘 ∼ 𝑞 (x𝑘 | x0) = N
(
x𝑘 ;

√
𝛼̄𝑘x0, (1 − 𝛼̄𝑘) I

)
(3.4)

at any step 𝑘 ∈ {0, . . . , 𝐾} as an interpolation x𝑘 =
√
𝛼̄𝑘x0 +

√
1 − 𝛼̄𝑘𝜺 between the

clean signal x0 and some fixed Gaussian noise 𝜺 ∼ N (0, I) with 𝛼𝑘 := 1 − 𝛽𝑘 and
𝛼̄𝑘 :=

∏𝑡
𝑖=1 𝛼𝑖. Typically, we design the noising schedule so that 𝛼̄𝐾 ≈ 0, by which

𝑞 (x𝐾) :=
∫

𝑞 (x𝐾 | x0) 𝑞 (x0) dx0 ≈ N (x𝐾 ; 0, I)

can be assumed to be an isotropic Gaussian for 𝐾 → ∞. Nichol et al. [53] propose
using a fixed cosine schedule2 with 𝐾 = 1000 for the forward process. Then, the
reverse diffusion process, described by the joint probability distribution 𝑝𝜽 (x0:𝐾)
from (3.2), can also be modeled as a Markov chain

𝑝𝜽 (x0:𝐾) := 𝑝 (x𝐾)
𝐾∏
𝑘=1

𝑝𝜽 (x𝑘−1 | x𝑘) (3.5)

that starts with a sample x𝐾 of pure noise drawn from the prior distribution 𝑝 (x𝐾) =
N (x𝐾 ; 0, I) as x𝐾 ∼ 𝑝 (x𝐾). Therefore, the network must learn Gaussian transi-
tion kernels that approximate the inverse 𝑞 (x𝑘−1 | x𝑘) of the forward transitions
in (3.3) as

𝑝𝜽 (x𝑘−1 | x𝑘) := N (x𝑘−1; 𝝁𝜽 (x𝑘 , 𝑘) ,Σ𝜽 (x𝑘 , 𝑘)) . (3.6)

The choice of Gaussian transitions in (3.6) is valid as long as 𝛽𝑘 is kept small [68].
This way, the model needs to learn the parameters 𝝁𝜽 (x𝑘 , 𝑘) and Σ𝜽 (x𝑘 , 𝑘) of the
reverse transition. In this sense, we can approximate the log-likelihood objective
L in 3.1 via the evidence lower bound (ELBO)

L ≤ L𝐾 +
𝐾∑︁
𝑘=2

L𝑘−1 + L0 (3.7)

L𝐾 = Ex0∼𝑞 (x) [𝐷KL (𝑞 (x𝐾 | x0) ∥ 𝑝 (x𝐾))] (3.7a)
L𝑘−1 = Ex0∼𝑞 (x) ,x𝑘∼𝑞 (x𝑘 |x0) [𝐷KL (𝑞 (x𝑘−1 | x𝑘 , x0) ∥ 𝑝𝜽 (x𝑘−1 | x𝑘))]

∀𝑘 ∈ {2, . . . , 𝐾} (3.7b)
L0 = −Ex0∼𝑞 (x) ,x1∼𝑞 (x1 |x0) [log (𝑝𝜽 (x0 | x1))] (3.7c)

The term (3.7a) has no learnable parameters 𝜽 and is thus ignored during training,
although it is close to zero if the requirement 𝑞 (x𝐾 | x0) ≈ N (x𝐾 ; 0, I) is fulfilled.

2Recent work [19, 42] shows that commonly used variance schedules fail at completely removing
lower-frequency information from the clean data point. Unless zero signal-to-noise ratio is en-
forced at the end of the forward diffusion process, the reverse process suffers from a distribution
shift between the aggregate posterior 𝑞 (x𝐾 | x0) seen during training and the prior 𝑝 (x𝐾) used
for generation.

19

3 Preliminaries

Also, (3.7c) represents a variational reconstruction term. Notably, the forward pro-
cess posteriors 𝑞 (x𝑘−1 | x𝑘) become tractable when conditioned on x0 via Bayes
theorem, such that we can use the KL divergence in (3.7b) to compute the varia-
tional gap between 𝑝𝜽 (x𝑘−1 | x𝑘) and

𝑞 (x𝑘−1 | x𝑘 , x0) = N
(
x𝑘−1; 𝝁𝑘 (x𝑘 , x0) , 𝛽𝑘I

)
,

where the mean 𝝁𝑘 (x𝑘 , x0) and the variance schedule 𝛽𝑘 are given by

𝝁𝑘 (x𝑘 , x0) :=
√
𝛼̄𝑘−1𝛽𝑘
1 − 𝛼̄𝑘

x0 +
√
𝛼𝑘 (1 − 𝛼̄𝑘−1)

1 − 𝛼̄𝑘
x𝑘 , (3.8)

𝛽𝑘 :=
1 − 𝛼̄𝑘−1
1 − 𝛼̄𝑘

𝛽𝑘 .

The variance Σ𝜽 (x𝑘 , 𝑘) in the reverse transition kernel (3.6) can be either fixed [22]
to Σ𝜽 (x𝑘 , 𝑘) := 𝜎2

𝑡 I or made learnable [53]. The mean 𝝁𝜽 (x𝑘 , 𝑘) could be di-
rectly predicted, but we obtain better results by substituting the explicit form of x𝑘
from (3.4) into the formulation of the mean in (3.8) to obtain

𝝁𝜽 (x𝑘 , 𝑘) =
1

√
𝛼𝑘

(
x𝑘 −

1 − 𝛼𝑘√
1 − 𝛼𝑘

𝜺𝜽 (x𝑘 , 𝑘)
)

with the neural network 𝜺𝜽 (x𝑘 , 𝑘) that predicts the noise 𝜺 present in x𝑘 . The ELBO
in (3.7) can then be reweighted by sampling 𝑘 from the uniform distribution 𝑘 ∼
U (1, 𝐾) and computing the denoising term L𝑘−1 from (3.7b) for 𝑘 ∈ {1, . . . , 𝐾},
which can be simplified to

Lsimple = Ex0∼𝑞 (x) ,𝑘∼U(1,𝐾) ,𝜺∼N(0,I)
[
∥𝜺 − 𝜺𝜽 (x𝑘 , 𝑘)∥2

]
(3.9)

in the case of fixed variance Σ𝜽 (x𝑘 , 𝑘) := 𝜎2
𝑡 I.

The neural network 𝜽 is commonly parameterized as a U-Net [59] with self-
attention [3, 49]. Rombach et al. [58] propose to denoise the data points in the
latent space of a VAE to alleviate the high computational and time cost of diffu-
sion models both during training and at sampling time. Moreover, more efficient
sampling techniques, modified formulations of the simplified objective, and distil-
lation approaches have been proposed in [56, 62, 69] and widely adopted by the
research community. Classifier-free guidance (CFG) [23] has become a popular
method to condition diffusion models on feature vectors, such as CLIP [57] em-
beddings of text descriptions. The guidance parameter can be tuned to achieve a
balance between perceptual quality of the generations (often measured in terms of
the FID score [21]) and variation between samples. We explore CFG in more depth
in Sec. 3.2.1. Furthermore, the ControlNet [78] architecture allows to spatially con-
dition the diffusion model and fine-tune large pre-trained models. There have been

20

3.3 Score Distillation Sampling

claims made that Gaussian noise is not necessary for denoising diffusion mod-
els to work and that the model can work even with deterministic perturbations [6],
showing the robustness of the diffusion framework. However, non-Gaussian per-
turbations have been found to hurt the generative performance both in terms of
quality and variability.

3.2.1 Classifier-free Guidance

Classifier-free guidance, introduced by [23], addresses limitations associated with
classifier guidance in diffusion models. Traditional methods often rely on a sep-
arate classifier to guide the generation process, which can introduce biases and
constraints due to the classifier’s training.
In contrast, classifier-free guidance eliminates the need for a separate classifier by
integrating guidance directly into the diffusion model. This is achieved by modify-
ing the training objective to include a conditioning variable 𝒚, allowing the model to
learn both conditional and unconditional distributions. During inference, the gen-
eration process can be guided by interpolating between these distributions, effec-
tively controlling the trade-off between sample quality and adherence to the condi-
tioning variable 𝒚. The equation for CFG is given by:

𝜺𝝓 (𝒙𝑡 ; 𝒚, 𝑡) = (1 + 𝑤CFG)𝜺𝝓 (𝒙𝑡 ; 𝒚, 𝑡) − 𝑤CFG𝜺𝝓 (𝒙𝑡 ; 𝑡), (3.10)

where 𝜺𝝓 (𝒙𝑡 ; 𝒚, 𝑡) is the predicted noise, 𝜺𝝓 (𝒙𝑡 ; 𝒚, 𝑡) denotes the conditional noise,
𝜺𝝓 (𝒙𝑡 ; 𝑡) represents the unconditional noise, and 𝑤CFG is the CFG weight. The
unconditional model is conditioned on the null token ∅ as the unconditional class
identifier, meaning that 𝜺𝝓 (𝒙𝑡 ; 𝑡) := 𝜺𝝓 (𝒙𝑡 ; 𝒚 = ∅, 𝑡). At training, we jointly learn
a conditional and an unconditional model by randomly dropping the conditioning
signal 𝒚 according to some probability 𝑝uncond, which is a hyperparameter. We con-
sider CFG to be an elegant method due to the simplicity of the approach, where
the same U-Net [59] can be trained to perform both tasks (conditional and un-
conditional prediction) and there is no need for an additional classifier, avoiding
classifier-based adversarial behavior.

3.3 Score Distillation Sampling

Score Distillation Sampling (SDS) [56] is a novel technique developed to improve
the generation quality of 3D generative models and the tractability in the context of
diffusion models. It leverages the foundational principles of diffusion models and
introduces a unique optimization-based approach to sampling that operates in the
parameter space rather than the pixel space, enabling effective text-to-3D synthe-
sis.
In standard diffusion models, ancestral sampling is typically used, where the model

21

3 Preliminaries

generates data samples directly in the pixel space. However, SDS diverges from
this approach by optimizing over the parameters of a differentiable image param-
eterization, such as a NeRF [50], which maps these parameters to the generated
image. SDS begins with a randomly initialized parameter vector 𝒛. These parame-
ters could define a 3D volume, which when rendered, generates the desired image.
Instead of generating samples in the pixel space, SDS optimizes the parameters
𝒛 such that the resulting image 𝒙 = r(𝒛), where r(𝒛) is a forward model, appears
as if it were a sample from the diffusion model. This is done by diffusing the image
and using the diffusion model’s score function to guide the optimization process.
The key to SDS is its loss function, which is inspired by probability density distilla-
tion. The score distillation loss LSDS is designed to minimize the Kullback-Leibler
(KL) divergence between the Gaussian distribution family and the score functions
learned by the pre-trained diffusion model. The gradient of the SDS objective is
given by:

∇𝜽LSDS(𝝓, 𝒙 = r(𝒛)) = E𝑡 ,𝜺
[
𝑤(𝑡)

(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺

) 𝜕𝒙𝑡
𝜕𝒛

]
(3.11)

This loss function effectively guides the optimization towards regions of the param-
eter space that correspond to high-density regions of the data distribution.
The gradient of the score distillation loss is computed without backpropagating
through the diffusion model’s U-Net, simplifying the optimization process. This is
achieved by treating the diffusion model as a frozen critic that provides a direc-
tion for image-space edits without the need for backpropagation through the entire
model.
SDS has been applied successfully in generating high-fidelity 3D models from text
descriptions. By combining SDS with a NeRF-like model tailored for 3D genera-
tion, methods like DreamFusion [56] have been able to produce coherent 3D ob-
jects and scenes from natural language prompts. This approach does not require
3D or multi-view training data, making it highly versatile and effective for various
generative tasks.
Score Distillation Sampling represents a significant advancement in the field of
generative modeling, particularly for applications requiring the generation of com-
plex, high-dimensional data such as 3D models. By leveraging the strengths of
diffusion models and introducing an innovative parameter space optimization ap-
proach, SDS enables the creation of high-quality generative outputs with improved
fidelity and coherence.

22

3.4 Defining Qualitative Operability Criteria for 3D Meshes

3.4 Defining Qualitative Operability Criteria for 3D
Meshes

In this section, we define the minimum requirements sine qua non for a 3D mesh to
be operational or production-ready for downstream industry applications. Meshes
are commonly employed in the design, manufacturing, simulation, architecture,
film, game, and media industries.

Geometry and topology. Geometry, encompassing vertices, edges, and faces,
forms the cornerstone of 3D mesh architecture, dictating the spatial manifestation
of objects. Topology, the study of how these elements interconnect, further refines
this by informing on the mesh’s deformation characteristics and structural integrity.
For a mesh to be deemed production-ready, its topology should predominantly con-
sist of quadrilaterals, facilitating smoother deformations and subdivisions, crucial
for high-fidelity animations. Efficiency and consistency in mesh density, tailored
to the object’s visual prominence and interaction within digital environments, are
paramount. It is also beneficial to have anisotropy in the topology to enable regions
of high detail, and edge loops should align with semantic features.

Surface definition. The surface definition, characterized by normals, materials,
and UV maps, serves as the nexus between the mesh’s geometric form and its
visual perception. Normals influence light reflection, essential for realistic render-
ing. Correct orientation and calculation of normals are vital for mimicking natural
light interactions. Materials, through the specification of physical properties (e.g.,
albedo, roughness), and UV maps, by dictating texture placement, collectively en-
rich the mesh with life-like detail. Production-readiness demands materials com-
patible with physically based rendering (PBR) standards and UV maps optimized
for minimal distortion, ensuring the verisimilitude of textures on complex surfaces.
Consistency is also a key feature of UV maps, as a shared UV space can be used
to interchange textures between different assets. Moreover, UVs should follow the
structures defined by the topology to hide visible seams along texture islands.

Rigging. It is critical that meshes share a common rig, such that shared anima-
tion libraries can be accessed. The skeleton must have accurately placed bones
and cover all joints present in the mesh. Skinning weights must be optimized to
work with a specific skinning algorithm and provide control over all bones in the
skeleton with a high degree of accuracy. The design of the skinning weights must
take into account the underlying topology, which defines the deformation behavior
of the mesh surface.

23

3 Preliminaries

3.4.1 Coherence and consistency.

Lastly, the mesh’s integration within its intended setting mandates attention to
stylistic coherence, and environmental consistency. For instance, in the context
of meshes that represent humanoid figures, anatomical realism becomes an im-
portant factor.
By establishing these criteria and components as the bedrock for 3D mesh devel-
opment, this discourse aims to set a clear, comprehensive stage for subsequent
examinations into our method.

24

4 Method

In this chapter, we present our generative model of humanoid meshes. We provide
an overview of our approach in Sec. 4.1 and discuss each of the components of
our algorithm in Secs. 4.2 - 4.4.

4.1 Overview

(i) (ii) (iii)

Figure 4.1: Overview of our method, which consists of three main components. The geo-
metric prior (i) defines the shape space of a 3DMM with known topology, skinning weights,
and UVs. We sample a mesh from the latent code 𝒛. Next, we render the mesh from
different views with shaded textures (ii). At last, the mutliview diffusion prior (iii) provides
the objective L that is backpropagated all the way back to 𝒛, as indicated by the dashed
arrow. We encode the renderings with a pre-trained, frozen VAE and perturb the latents
with isotropic Gaussian noise 𝜺 ∼ N(0, 𝑰) and noise scale 𝑡 ∼ U(0, 1). We denoise the
noised latents with a multi-view diffusion U-Net conditioned on a text prompt. The loss is
equivalent to the squared Euclidean norm of the reconstruction error. We use the icon of
a lock to point out networks with non-trainable weights.

SDS methods consist of a forward model that samples images by projecting
some underlying 3D neural representation (usually some variant of NeRF [50] or
Gaussian Splatting [32]) onto the image plane, and a diffusion prior that acts as a
critic by denoising the renderings after being perturbed with Gaussian noise. The
error gradient is then backpropagated into the 3D representation and the process
is repeated iteratively until convergence. As a last step, a mesh is extracted from
the 3D representation, usually via Marching Cubes [46].
Our motivation is to introduce a geometric prior that operates in mesh space into
the forward model. The reasons are that (i) a geometric prior in mesh space allows

25

4 Method

to better control the structural properties of the output mesh, which is not possi-
ble with Marching Cubes or post-processing algorithms. We can directly sample
the output mesh from the geometric prior. Also, (ii) the geometric prior is a strong
prior over the distribution of shapes and appearance, regularizing the diffusion and
helping in turn the mode seeking nature of SDS. And finally, (iii) sampled shapes
correspond to an identity code that is interpretable, controllable, and editable
We construct the geometric prior as a 3D morphable model that defines a shape
space as an orthogonal and uncorrelated subspace of our own dataset of blend
shapes of humanoids. The basis of the shape space is spanned by a set of PCs,
each corresponding to an eigenvector of the covariance matrix derived from the
data. In the context of a mesh-based representation, each PC defines a specific
mode of variation around the template mesh. These modes can be interpreted
as displacements from the average mesh. The sign and magnitude of the coeffi-
cient for each PC determine the direction and extent of this deformation from the
average shape. Thus, the geometric prior serves both as a prior of the geomet-
ric properties of the output mesh (topology, skinning weights, texture coordinates,
vertex attributes, etc.), and as a shape prior, where each point in the shape space
represents a unique shape.
In essence, our generative framework performs an iterative search over the shape
space of the 3DMM and the appearance space defined by a neural field to find
the 3D object that best matches an input textual description. In every iteration, we
use a differentiable renderer to render the mesh into a set of images from four or-
thogonal perspectives. Then, a multi-view diffusion prior acts as a visual critic that
provides guidance via gradient descent. We provide an overview of the proposed
approach in Fig. 4.1.
The remainder of this chapter is structured as follows: we introduce the geomet-
ric prior in Sec. 4.2. Next, we discuss the differentiable rendering mechanism that
completes the forward model in Sec. 4.3. We close by presenting the diffusion prior
in Sec. 4.4.

4.2 Geometric Prior

In this section, we focus on the development of a shape generative model capable
of capturing geometric variations across different samples while maintaining a fixed
topology. By shape, we specifically refer to the vertex positions of a triangular
mesh, characterized by some given mesh connectivity. We define the generator
as a point distribution model, which is a function

g𝝓 : Z ⊆ R𝐾 → R3𝑁 , (4.1)

parameterized by 𝝓, which maps a latent vector 𝒛 ∈ Z to a shape 𝒔 ∈ R3𝑁 as
𝒔 = g𝝓 (𝒛). Hence, we aim to approximate with g𝝓 (𝒛) the prior probability den-

26

4.2 Geometric Prior

sity q(𝒛) over the shape space Z. This prior probability distribution serves as a
measure of the likelihood that a given vector 𝒛 within the shape space represents
a realistic and plausible shape 𝒔. Several methodologies exist for constructing
such shape generators, including non-linear models like variational autoencoders
(VAEs) [33, 35] or autodecoders (ADs) [50]. In our own experience, VAEs are more
flexible than the data that they are trained on and learn behavior that is more com-
plex, learning to autoencode and generate data patterns that they have not been
trained on. While this inherent versatility of AEs can be beneficial for applications
such as image compression, it is hard to constrain an AE to accurately model the
shape space of a dataset of meshes without undesired hallucinations of out-of-
distribution shapes.
To enhance the interpretability of our generative framework, we opt for 3DMMs as
our geometric prior, which leverages linear statistical shape analysis as the foun-
dation of its generative process. 3DMMs are a type of statistical model used to
represent and manipulate the 3D shapes and appearances of objects, most com-
monly human faces. The core idea behind the seminal work of 3DMMs [8] is that
any face can be represented as a linear combination of the mean face and a set of
principal components derived from the training data. These components capture
key variations, such as differences in facial structure, expressions, and skin tex-
tures. Practically, 3DMMs are the extension of the concept of eigenfaces [74] from
2D images to 3D meshes. The 3DMM can synthesize realistic and unseen faces
by linearly interpolating or extrapolating samples of the training set. The same
idea can be extended beyond faces to more general shapes, like the full human
body [14, 45] or even quadruped animals [79].

4.2.1 3D Morphable Model

Figure 4.2: Illustration of the differentiable generator g𝝓 (𝒛), which maps a parameter vector
𝒛 in a 𝐾-dimensional shape space to an output mesh as a linear combination of PC blend
shapes. Each PC 𝑽e𝑖 defines a specific mode of variation around the template shape 𝒔̄.
These modes can be interpreted as displacements from the average mesh (for visibility,
we scaled up the PCs in the depiction, as their magnitude is very close to the origin). The
linear coefficients 𝜎𝝓 (𝑧𝑖), which constrain the shape space to the AABB that is defined by
the dataset projected to the PCA space, modulate the contribution of each PC.

Given a dataset of 3D blend shapes with fixed topology, our goal is to construct

27

4 Method

a 3DMM by performing Principal Component Analysis (PCA) over the differences
of the vertices with respect to a template shape. Let the dataset

D = [𝒅1, 𝒅2, . . . , 𝒅𝑚] (4.2)

consist of |D| blend shapes, each containing 𝑛 vertices. Let each blend shape be
represented as a vector 𝒔𝑖 ∈ R3𝑛 for 𝑖 = 1, 2, . . . , |D|. We begin by defining the
template shape 𝒔̄ as the average of the dataset. The template shape is computed
as:

𝒔̄ =
1

|D|

|D |∑︁
𝑖=1

𝒔𝑖. (4.3)

Next, we center the data by calculating the difference vector between each blend
shape 𝒔𝑖 and the average shape 𝒔̄:

∆𝒔𝑖 = 𝒔𝑖 − 𝒔̄, for 𝑖 = 1, 2, . . . , |D|. (4.4)

We organize the difference vectors into a data matrix ∆S ∈ R3𝑛×|D | as follows:

∆S =
[
∆𝒔1,∆𝒔2, . . . ,∆𝒔 |D |

]
. (4.5)

Because of the centering in Eq. (4.4), the data matrix ∆S has column-wise zero
empirical mean. Each column represents the deviation of a blend shape relative
to the template1. We compute the covariance matrix C of the centered data:

C =
1

|D| − 1
∆S∆S⊤, (4.6)

where C ∈ R3𝑛×3𝑛. The covariance matrix captures the relationships between the
deviations of the vertices in the blend shapes. We perform an eigen decomposition
of the covariance matrix to obtain the eigenvalues 𝜆𝑖 and eigenvectors 𝒒𝑖:

C𝒒𝑖 = 𝜆𝑖𝒒𝑖, for 𝑖 = 1, 2, . . . ,min(3𝑛, |D|). (4.7)

The eigenvectors 𝒒𝑖 represent the principal components (directions) of the varia-
tion in the dataset, and the corresponding eigenvalues 𝜆𝑖 indicate the amount of
variance explained by each component. The number of non-zero eigenvalues is
limited by the smaller dimension of the data matrix, which is the minimum between
the number of vertices (3𝑁) or the number of blend shapes (|𝐷 |), indicated by
min(3𝑁, |D|). The 3D morphable model is then constructed using the template

1Note that common PCA applications, such as feature or dimensionality reduction, stack different
data samples along the row axis. Instead, we aim to extract orthonormal principal components
of the data as a way of “data reduction”. Therefore, we stack the data samples along the column
dimension.

28

4.2 Geometric Prior

shape 𝒔̄, the PCs 𝒒𝑖, and the eigenvalues 𝜆𝑖. A new shape 𝒔new can be generated
as:

𝒔new = 𝒔̄ +
𝐾∑︁
𝑖=1

𝜔𝑖𝒒𝑖, (4.8)

where 𝜔𝑖 are the coefficients associated with the orthonormal PCs, and 𝐾 is the
number of PCs retained to approximate the shape. We substitute 𝜔𝑖 with another
variable in Sec. 4.2.2. The choice of 𝐾 depends on the desired balance between
model complexity and fidelity to the original data. By applying PCA to the deviations
of blend shapes from a template, we have derived a compact representation of the
variability inherent in the dataset. This model allows for the generation of new,
realistic 3D shapes that adhere to the patterns of variation observed in the original
blend shapes. The PCs provide a reduced-dimensionality basis for representing
shape variation, facilitating efficient manipulation and synthesis of new shapes in
3D space.

Figure 4.3: We perform PCA over the dataset and plot the individual and cumulative ex-
plained variance by all PCs. We observe a steep increase of the cumulative explained
variance: 99% of the variance is contained in the first 12 PCs.

Despite the fact that only the first 12 PCs are needed to explain 99% of the variance
in the data (see Fig. 4.3), we still choose the first 𝐾 = 100 PCs to construct the
shape space of our geometric prior. We choose such a high cutoff mainly for two
reasons:

1. In principle, the cardinality of our dataset (|D| = 236, see Sec. 4.2.3) is
small enough that the original samples could be used for interpolation with-
out performing dimensionality reduction via PCA. However, performing PCA
improves the optimization landscape of the shape space for the subsequent
gradient descent optimization, because the PCs form an orthogonal and un-
correlated basis of the dataset with diagonalized covariance matrix. Thus,
each parameter (corresponding to a PC) can be optimized independently
without affecting the others, i.e., the optimization process does not have to

29

4 Method

deal with cross-coupled parameters. The simplified landscape is smoother
and less prone to local minima, as every point in the space is guaranteed to
be unique. We ablate the choice of the PCA shape space in Sec. 5.7.

2. Additionally, high-frequency, small-scale facial details, such as wrinkles or
subtle curvature of the nose, are critical for human perception but may ac-
count for a minor portion of the overall variance in the data, as they are
dominated by low-frequency, large-scale variations like character height or
width. Therefore, we include a larger number of PCs to ensure these facial
details are accurately captured in the shape space. Following the 3DMM lit-
erature [8, 14], we do not standardize the data for PCA, as all meshes are
already aligned, oriented, and share the same units. Experimentally, we do
not find the standardization to improve the optimization landscape either.

4.2.2 Axis-Aligned Bounding Box Clipping

Furthermore, we can constrain the shape space to remain close to the convex hull
of the original data, which is the distribution of realistic shapes. Projecting the
original data onto the shape space – i.e., the subspace spanned by the chosen
subset of PCs – transforms the data points into a new space where each axis
corresponds to a PC. Then, we can extract an axis-aligned bounding box (AABB)
as the minimum bounding box that contains all the projected data points in the PC
subspace. The sides of this bounding box are aligned with the axes of the chosen
PCs, and not (necessarily) with the original feature axes. This AABB represents the
range of the projected data along the selected PCs, encapsulating the variation in
the data as captured by those components. Notably, limiting the shape space to the
AABB of the training data does not impede extrapolation of the training data points,
which would severely hinder the expressivity of the 3DMM. Intuitively, extrapolation
of the shape space occurs outside the convex hull that is formed by projecting the
training dataset to the PC shape space. Not only is the AABB a superset of the
convex hull (the convex hull is inscribed in the AABB), but the volume spanned by
the AABB is several orders of magnitude larger than that of the convex hull. We
discuss this finding in more detail in Appendix 8.1.
With the 3DMM from Eq. (4.8), we can finally build our geometric prior g𝝓 (𝒛) by
substituting the weights 𝜔𝑖 with an activation function 𝝈𝝓 (𝒛) over the parameter
vector 𝒛 as:

g𝝓 (𝒛) = 𝒔̄ +
𝐾∑︁
𝑖=1

𝜎𝝓 (𝑧𝑖)𝒒𝑖. (4.9)

The activation function 𝝈𝝓 (𝒛) : Z → Z′ maps the parameter vector 𝒛 to the axis-
aligned bounding box

Z′ := [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × · · · × [𝑎𝐾 , 𝑏𝐾]

30

4.2 Geometric Prior

𝒔𝒔 − 1.87𝒒1 𝒔 + 10.40𝒒1

(a) PC 1.

𝒔𝒔 − 5.18𝒒2 𝒔 + 11.33𝒒2

(b) PC 2.

𝒔𝒔 − 3.50𝒒3 𝒔 + 4.45𝒒3

(c) PC 3.

𝒔𝒔 − 1.26𝒒4 𝒔 + 1.99𝒒4

(d) PC 4.

𝒔𝒔 − 1.62𝒒5 𝒔 + 1.98𝒒5

(e) PC 5.

𝒔𝒔 − 0.57𝒒6 𝒔 + 0.85𝒒6

(f) PC 6.

Figure 4.4: The first six body shape PCs, driven to the extremes of the AABB. The template
mesh 𝒔̄ is depicted at the center of each subplot. To the left and right, the meshes 𝒔̄ + 𝑎𝑖𝒒𝑖
(minimum of the AABB) and 𝒔̄ + 𝑏𝑖𝒒𝑖 (maximum of the AABB) are shown respectively for
𝑖 = 1, 2, . . . , 6. The labels above have substituted 𝑎𝑖 and 𝑏𝑖 with their corresponding actual
scalar values. We illustrate the magnitude of the per-vertex offset in the unscaled PCs as a
gradient of blue, where the intensity of the color correlates with the absolute displacement.

in 𝐾 dimensions. The AABB is therefore the Cartesian product (denoted by “×”) of
closed intervals [𝑎𝑖 , 𝑏𝑖], with 𝑎𝑖 being the lower bound and 𝑏𝑖 the upper bound of
the 𝑖-th dimension, i.e.

𝑎𝑖 ≤ 𝑏𝑖∀𝑖 ∈ {1, 2, . . . , 𝐾} .

We perform the clipping operation with the activation function 𝝈𝝓 (𝒛) as:

𝝈𝝓 (𝒛) = 𝒂 + (𝒃 − 𝒂)𝝈sigmoid(𝒛), (4.10)

where the vectors 𝒂 and 𝒃 simply aggregate the bounds of the AABB:

𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝐾) ∈ R𝐾 , 𝒃 = (𝑏1, 𝑏2, . . . , 𝑏𝐾) ∈ R𝐾 .

31

4 Method

With a slight abuse of notation, the vector sigmoid function is determined by

𝝈sigmoid(𝒛) =
1

1 + 𝑒−𝒛 ,

with the division and the exponential operators applied element-wise. We initialize
the parameter vector 𝒛 as 𝒛init such that 𝝈𝝓 (𝒛init) = 0 by inverting Eq. (4.10):

𝒛init = log

(
𝒚

1 − 𝒚

)
, with 𝒚 = − 𝒂

𝒃 − 𝒂
.

Again, we adapt the notation here to apply all operators element-wise and denote
with 𝒚 a temporary variable that we use just once to enhance readability. All in all,
the generator g𝝓 (𝒛) is fully parameterized by the tuple

𝝓 := (𝒔̄, 𝒒, 𝒂, 𝒃) .

4.2.3 Dataset

Figure 4.5: Some example meshes from our mesh dataset.

We gather a dataset of |D| = 236 meshes representing a distribution of adult hu-
manoid bodies. The dataset captures a wide range of anatomies and artistic styles
that include realistic, fantastic, and cartoonish features. All samples in the dataset
have been scuplted by professional technical artists holding to the highest quality
standards of the AAA industry, as described in Chapter 3. Some example meshes
are depicted in Fig. 4.5. Each mesh in the dataset consists of exactly 𝑁 = 25, 182
vertices and 𝑀 = 50, 312 quadrangular faces. While the positions of the vertices
change across samples, the topology is the same for all. Thus, the meshes are
considered to be blend shapes, meaning that any subset of the dataset can be lin-
early interpolated by blending the vertices of the selected meshes. In terms of [14],
all our meshes have a point-to-point correspondance and share scale and orienta-
tion.
Furthermore, all meshes are registered to a common UV space that consists of

32

4.3 Differentiable Renderer

Figure 4.6: Mesh topology unwrapped into UV space, where each unit box represents an
individual UDIM tile. Edges in the wireframe are drawn as black lines, and the inside of the
faces is filled in light blue. From left to right, the UDIM tiles correspond to the head, body,
legs, arms, and nails of the humanoid mesh.

five UDIM tiles for high resolution texturing, consisting of UV coordinates and ver-
tex texture coordinate indices for efficient unwrapping and smooth blending along
seams. In Fig. 4.6, we show the quadrangular topology of the dataset, unwrapped
into UV space. Edge loops are optimized for rendering efficiency, as well as shape
deformation (animation), subdivision and editability.
Besides, other vertex attributes are also shared across all meshes in the dataset.

Figure 4.7: We render a selection of skinning weights of our meshes in Blender [12], which
are displayed as a heat map (blue for a value of 0 and red for value of 1). From left to right,
the weights correspond to the left ear, left cheek, center brow, lower jaw, neck, and right
shoulder.

Our dataset also defines artist-designed skinning weights, which control the in-
fluence of a skeletal bone structure to each vertex. Skinning weights are critical
for correct deformation of the surface in animation settings and must be designed
jointly with the topology. We show exemplarily a selection of joints around the
face and the upper body in Fig. 4.7. Each vertex has a weight for each joint in the
skeleton, and weights are normalized to add up to 1 for each vertex. The underlying
skeleton is composed of a hierarchy of over 200 bones, which we do not consider
for our 3DMM. Our skinning weights are optimized to work with dual quaternion
blend skinning [31].

33

4 Method

Figure 4.8: Demonstration of our differentiable foreground renderer, the background part
is excluded of this illustration. First, we rasterize the input mesh with a differentiable ras-
terizer [37]. We use the rasterized barycentric coordinates of the triangles to interpolate
different vertex attributes along the image plane. Two streams originate from here: one for
albedo rendering (bottom), and another one for textureless Lambertian shading (top). For
the albedo rendering, we interpolate the 3D vertex coordinates. Then, we pass the 3D po-
sition 𝒑 of each foreground pixel through a multi-resolution hash encoding module [51] to
extract a positional feature encoding. Our depiction of the multi-resolution hash encoding
is inspired by InstantNGP [52]. The feature vector is decoded into an albedo color image
via an MLP. On the upper shading stream, we interpolate the vertex normals to perform
Lambertian shading with a random diffuse point light source and ambient light. During
training, the final rendering consists of the shading and is combined with the albedo with
a 50% chance.

4.3 Differentiable Renderer

In our pursuit of a forward model that generates an image x from a latent code z, it
is crucial that the forward model remains differentiable. This requirement is neces-
sary to ensure that the latent code z can be optimized via backpropagation using
gradient-based methods. In the previous section, we discuss the first component
of this forward model: a generator g𝜽 that translates the latent code z into a 3D
mesh. Having established this foundation, we now turn our attention to the second
essential component, which is the differentiable renderer

r𝜽 : M := R3𝑁 → [0, 1]𝐷 , (4.11)

34

4.3 Differentiable Renderer

which rasterizes the 3D mesh g𝝓 (𝒛) into the image x given the camera parame-
ters c:

𝒙 = r𝜽
(
g𝝓 (𝒛), 𝒄

)
. (4.12)

The geometric prior defines a shape space that is regularized by a 3DMM, but it
does not represent texture color. Thus, we build our differentiable renderer not only
to rasterize the mesh from our mesh generator, but also to learn a feature space
of RGB albedo color and apply shading effects. A schematic representation of our
renderer can be found in Fig. 4.8.
Given a mesh g𝝓 (𝒛) into the image x and camera parameters c, we first normalize
the input mesh to the unit cube. When rendering a 3D scene, we need to ac-
count for the perspective distortion that occurs when projecting 3D objects onto a
2D screen. We use nvdiffrast [37] to project the barycentric coordinates onto the
2D image plane with perspective correction and occlusions. Nvdiffrast is a GPU-
based differentiable rasterization library used in deep learning frameworks for ren-
dering 3D models and computing gradients for use in training. The nvdiffrast API
expects input vertices to be in clip coordinates. In this context, nvdiffrast applies
the barycentric perspective correction during the rasterization process to ensure
that the interpolation of vertex attributes (like textures) is accurate when viewed in
perspective.

Albedo. The projected barycentric coordinates can then be used to interpolate
vertex attributes, such as vertex normals and 3D positions across the surface of a
projected triangle. For albedo texture, we create an image 𝒙pos with interpolated
3D vertex positions and sample for each pixel the point color at that 3D coordinate
from an InstantNGP module [52] that leverages the efficient implementation in tiny-
cudann [51]. The 3D position is encoded into a feature vector via a multi-resolution
hash grid, which consists of a series of voxel grids at different resolution levels.
For that purpose, we first find the corners of the surrounding voxels at each reso-
lution level, which are all assigned an integer index, and look up a feature vector
corresponding to each corner in a hash grid. The features are then interpolated
according to the relative position of the 3D coordinate within each voxel. The inter-
polated features are concatenated together and taken as input to an MLP that has
three output neurons, one for each color channel, and a sigmoid activation to limit
outputs to the range (0, 1). The output is an albedo image 𝒙albedo. All components
are differentiable and learnable, InstantNGP learns neural field of albedo color. In-
tuitively, our renderer can be thought of as a cloud of RGB color (the InstantNGP)
that is only painted onto the surface of a mesh canvas (the mesh g𝝓 (𝒛)). The gra-
dients provide a signal to deform the 3D canvas and correct the 3D color cloud to
better represent the shape and appearance predicted by the difusion prior in 2D
image space.

35

4 Method

Shading. We consider a Lambertian shading model [38] to provide an additional
learning signal that proves to be critical to learn proper shapes. Without shading,
our differentiable renderer produces flat projections of the albedo texture and our
generative framework can “cheat” by painting geometric detail on surfaces that
have a different shape. We interpolate vertex normals along the rasterized image
and obtain an image 𝒙normal. Following DreamFusion [56], we consider a random
point light source that has the position 𝒍 and color 𝒍p, as well as an ambient light
source with color 𝒍a. We assume 𝒍, 𝒍p, and 𝒍a to be repeated for each pixel to have
the same length as 𝒙pos. We can then obtain the directions 𝒍d of the point light
source in image space as the difference

𝒍d = 𝒍 − 𝒙normal.

Then, the shading image 𝒙shading is computed as:

𝒙shading = 𝒙normal · (𝒍d ⊙ 𝒍p) + 𝒍a,

where ⊙ denotes the point-wise Haddamard product. With a probability of 50%,
we use the textureless 𝒙shading as the output of differentiable renderer, and the
remaining times we return the fully shaded image 𝒙 as:

𝒙 = 𝒙shading ⊙ 𝒙albedo.

Background. For the background image, we follow MVDream [67] to create a
neural environment background map. We compute viewing directions 𝒙view as

𝒙view = 𝒙pos − 𝒄,

where 𝒙pos designates the image of interpolated 3D vertex positions and 𝒄 are the
camera parameters. Next, we encode 𝒙view using spherical harmonics. We then
predict a per-pixel RGB color with an MLP that shares the same architecture as the
the feature MLP for albedo rendering. To achieve sparsity between the foreground
and the background, we replace the background with a probability of 50% with a
random, uniform color.

4.4 Diffusion Prior

At inference, we need to find the parameter set 𝑧 and corresponding multi-resolution
hash grid parameters that minimize the loss under some critic network. As previ-
ously discussed, we adopt SDS to provide guidance to the optimization process
with a diffusion model. In this section, we first examine the choice of a low CFG
scale (in comparison with other SDS methods), enabled by the information flow
that exists between the geometric prior and the denoising diffusion network. Then,
we motivate using MVDream [67] as our pre-trained diffusion prior, due to its archi-
tecture that supports supervision on multiple views of the 3D object.

36

4.4 Diffusion Prior

4.4.1 Classifer-Free Guidance in Score Distillation Sampling

DreamFusion [56] originally proposes to set a CFG scale of 𝑤CFG = 100, which
is orders of magnitude larger than image sampling methods. The authors argue
that the large value of 𝑤CFG is necessary for the SDS objective to converge to
a mode: an increasing CFG scale aligns sampled images more closely with the
conditioning prompt, while decreasing the diversity of those samples. Subsequent
SDS-based 3D generative methods also rely on comparably high CFG weights [41,
67]. However, large CFG scales also cause 𝒙0,CFG (we denote with 𝒙0,CFG the
reconstructed image with CFG) to have a large scale and, by extension, the diffused
image to be overexposed [1]. Therefore, the guidance weight 𝑤CFG practically
poses a trade-off between generating blurry 3D models for low values and over-
saturated results for high values.
Inspired by Alldieck et al. [1], we decompose ∇𝒛LSDS, presented in Eq. (3.11), into
two components:

∇𝒛LSDS = ∇𝒛Lproj + (𝑤CFG + 1) ∇𝒛Lcond (4.13)

∇𝒛Lproj = E𝑡 ,𝜺

[
𝑤(𝑡)

(
𝜺𝝓 (𝒙𝑡 ; 𝑡) − 𝜺

) 𝜕𝒙𝑡
𝜕𝒛

]
(4.13a)

∇𝒛Lcond = E𝑡 ,𝜺

[
𝑤(𝑡)

(
𝜺𝝓 (𝒙𝑡 ; 𝒚, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

) 𝜕𝒙𝑡
𝜕𝒛

]
(4.13b)

Please, refer to Appendix 8.2 for the derivation of Eq. (4.13). Note that our de-
composition is not identical to [1], as we consider the original formulation of 𝑤CFG
by [23] and also factor (𝑤CFG + 1) out of ∇𝒛Lcond. Nevertheless, the subsequent
mathematical analysis is fundamentally equivalent, as it is rooted in the fact that
there is an unconditional term (4.13a) and a conditional term (4.13b) that contribute
to the SDS gradient. On the one side, ∇𝒛Lproj guides the unconditional reverse dif-
fusion process by contributing the gradient to remove one level of noise from the
perturbed image 𝒙𝑡 with noise scale 𝑡. The gradient points towards the manifold of
realistic images (or the distribution the diffusion model has been trained on). On the
other side, ∇𝒛Lcond directs the conditional reverse diffusion process to align with
the provided prompt by supplying the gradient to the image denoised via condition-
ing on the text description 𝒚. Particularly, the latter term does not necessarily point
towards the manifold of realistic images, which further explains the over-saturation
artifacts observed in 3D models sampled with high CFG scales, where ∇𝒛Lcond
dominates the SDS objective (4.13).
We argue that the vanilla SDS objective is underconstrained, which explains the
need for an exaggerated guidance scale to aid mode seeking. We can find a mode
using the same CFG scale as image sampling methods by leveraging a geometric
prior that constrains the space of admissible shapes to a class-specific manifold
that intersects the distribution of realistic shapes. In turn, we empirically find gen-
erated 3D models to improve both in shape and appearance when lowering the

37

4 Method

guidance scale (see Fig. 4.9), because we can sample the diffusion prior with opti-
mal hyperparameter settings. There is an information flow from the geometric prior
g𝝓 (𝒛) to the diffusion prior ∇𝒛LSDS via 𝒙𝑡 via the forward model. By inserting the
equation for the forward model in Eq. (4.12) into the forward diffusion process in
Eq. (3.4) and setting 𝒙0 := 𝒙, we obtain:

𝒙𝑡 = N
(
𝒙𝑡 ;

√
𝛼̄𝑡r𝜽

(
g𝝓 (𝒛), 𝒄

)
, (1 − 𝛼̄𝑡) I

)
. (4.14)

Thus, per Eq. (4.14), the denoising U-Net 𝜺𝝓 (𝒙𝑡 ; 𝑡) that predicts the noise added to
𝒙𝑡 always operates on perturbed, textured projections 𝒙𝑡 of the parameter vector 𝒛,
which is a realization of the shape space Z of the geometric prior. Therefore, both
the unconditional gradient ∇𝒛Lproj and the text-conditional gradient ∇𝒛Lcond are
heavily biased to point to images that are a possible projections of the shape space
Z of the 3DMM. The geometric prior acts as prior of the shape space and it reg-
ularizes the diffusion model via Eq. (4.14). We provide the intuition that this effect
constrains the SDS objective by guiding it towards the manifold that intersects the
distribution of realistic images with the shape space of the geometric prior (which
is our AABB of the data in PCA space), alleviating the need for a strong contribu-
tion of ∇𝒛Lcond for mode-seeking via a high value of 𝑤CFG. A similar reasoning
could be followed to argue that we can converge to valid shapes, even without a
multi-view consistent diffusion prior (see experiment in Sec. 5.6), although we find
multi-view consistency to improve convergence. In Fig. 4.9, we ablate the effect
of the guidance coefficient 𝑤CFG on the meshes sampled by our and compara-
ble methods, such as DreamFusion [56], Magic3D [41], and MVDream [67]. For
DreamFusion and Magic3D, we use the implementation in threestudio [18] with
StableDiffusion v2.1 [58]. For MVDream, we employ the official implementation
that is also available through threestudio. In the case of DreamFusion, we ob-
serve that the algorithm reliably produces outputs only at the prescribed value of
𝑤CFG = 100. We find Magic3D to be more unstable, where no single value con-
sistently yields optimal results, though values exceeding 𝑤CFG = 50 are generally
required. MVDream on the other side exhibits greater stability, with most 𝑤CFG val-
ues producing perceptually satisfactory results. Nevertheless, we see that lower
𝑤CFG values can still introduce artifacts in certain scenarios, which aligns with the
authors’ recommendation of using 𝑤CFG = 50. Across all three concurrent meth-
ods, cloud-like artifacts such as structural holes, extrusions, and floating blobs of
material are evident, which are known issues of neural field representations like
NeRF [50] and InstantNGP [52]. Our method, in contrast, is the most stable and
reliable of all, where the 𝑤CFG parameter primarily influences the saturation of col-
ors in the albedo texture and 3D shape to a much lesser degree. While 𝑤CFG = 7.5
is generally considered to work well for image-based StableDiffusion applications,
we find the slightly higher value of 𝑤CFG = 10 to enhance details in our use case.

38

4.4 Diffusion Prior

𝑤CFG = 7.5 𝑤CFG = 10 𝑤CFG = 50 𝑤CFG = 100

D
re

am
Fu

si
on

M
ag

ic
3D

M
VD

re
am

O
ur

s

(a) “a middle-aged female bedouin dressed in
white”

𝑤CFG = 7.5 𝑤CFG = 10 𝑤CFG = 50 𝑤CFG = 100

(b) “filipino male, in his 50s, looks younger”

Figure 4.9: Effect of the guidance weight 𝑤CFG on DreamFusion [56] (first row),
Magic3D [41] (second row), MVDream [67] (third row) and our method (fourth row). We ren-
der an orthographic frontal projection of the mesh output and place a black cross wherever
the isosurface extraction algorithm fails to extract a mesh from the volume. While colors
saturate with increasing value of 𝑤CFG, most SDS methods require high guidance scale:
DreamFusion recommends 𝑤CFG = 100, and Magic3D and MVDream use 𝑤CFG = 50. We
find our approach to produce best results with 𝑤CFG = 10. All meshes are generated by
appending the string “, shaved head, wearing a tank top” to the labels in the captions.

4.4.2 Multi-view Consistency

As a diffusion prior, we opt for the diffusion model provided by MVDream [67], which
is trained on multi-view renderings of Objaverse [13] objects and can predict orthog-
onal views of a 3D asset that have an acceptable degree of multi-view consistency.
While the 3D consistency of the diffused images is not perfect, we find MVDream
to clearly outperform Zero123 [43], Zero123-XL [13], and SyncDreamer [44], which
all address the same task of multi-view image diffusion.
MVDream finetunes Stable Diffusion [58] by making a key architectural change to
support multi-view images. The MVDream network incorporates a pseudo-3D self-
attention mechanism that simply flattens the concatenated input views along the
sequence dimension representing the tokens. Hence, the 2D self-attention layer
from the original Stable Diffusion U-Net can be recycled by expanding it to support
the additional input weights. The extended self-attention layer is initialized by re-
peating the pre-trained weights for the additional input views, and the weights are
later finetuned and provided in the checkpoint. Finally, the finetuned U-Net is also
conditioned on camera embeddings by encoding the camera parameters with a

39

4 Method

2-layer MLP. The camera embeddings are then added to the time embeddings as
residuals.
We also adopt the reconstruction objective from MVDream, which is a special case
of the SDS loss:

L = E𝑡 ,𝒄,𝜺
[
∥𝒙 − 𝒙0∥22

]
, (4.15)

where 𝜺 ∼ N(0, I) is isotropic Gaussian noise, 𝒄 is a randomly sampled camera,
and 𝑡 is the diffusion time step (we refer to the implementation details in Sec. 5.1).
MVDream demonstrates that Eq. (4.15) is equivalent to the original SDS formula-
tion from Eq. (3.11) by setting the weights 𝑤(𝑡) equal to the signal-to-noise-ratio.
The modified loss performs similarly to the SDS objective. The advantage of hav-
ing a reconstruction loss like Eq. (4.15) is that the CFG rescaling trick from [42] can
be applied to improve the noise schedule of the diffusion model.

40

5 Experiments

In this section, we explore potential applications of our method and provide re-
sults. We start by explaining the experimental setup and implementation details in
Sec. 5.1. We then propose an evaluation metric in Sec. 5.2 that interpolates the
image embeddings of renderings from different views to measure the alignment
between the sampled 3D mesh and the input text prompt. Next, in Sec. 5.3, we
evaluate the pipeline that we propose for text-to-3D generation. Then, we show in
Sec. 5.4 how output meshes can be edited by manually adjusting the coefficients
that scale the contributions of the PCs, or by exchanging textures in a shared UV
space. Sec. 5.5 demonstrates that our generative framework is compatible with
other 3DMMs as a geometric prior, which allows to extend the range of our gener-
ative model to other asset classes. Similarly, we interchange the diffusion prior in
Sec. 5.6 to modify the guidance of our method, which can be useful, for instance,
to generate meshes in a particular style. Finally, we ablate some hyperparameter
choices in Sec. 5.7.

5.1 Experimental Setup and Implementation Details

We manually curate a test set of prompts that are in the distribution of the geomet-
ric prior. Also, we add a procedural prompt processing step that mitigates artifacts
that arise when the diffusion prior guides the generation process towards shapes
outside the shape space of the 3DMM. For example, the geometric prior that we
construct defines a shape space that captures variation in the human anatomy, but
it does not represent items like garments or hair. Hence, in that case we append “,
shaved head, wearing a tank top” to every prompt to ensure that the diffusion prior
only considers clothing items and hair that remain in tight proximity of the body of
the character, and can therefore be represented exclusively in texture space with-
out additional geometry in our 3D representation. Similar prompt engineering tricks
are applied for geometric priors that span different shape spaces (such as busts
of human faces), which we indicate in the corresponding section (Sec. 5.4). For
the negative prompt, we keep the default string from MVDream [67] which is “ugly,
bad anatomy, blurry, pixelated obscure, unnatural colors, poor lighting, dull, and
unclear, cropped, lowres, low quality, artifacts, duplicate, morbid, mutilated, poorly
drawn face, deformed, dehydrated, bad proportions”.
We synthesize new meshes by running the optimization process for 7000 iterations.

41

5 Experiments

We operate MVDream on 4 views at 64 × 64 resolution for the first 500 iterations,
and then at 256×256 for the remaining iterations. All views share the same field of
view, which we sample from a uniform distribution U(15◦, 60◦) and the elevation
from U(0◦, 30◦). The camera distance is derived by multiplying the object size
with the NDC focal length and a factor sampled uniformly from U(1.0, 1.2). The
azimuth of the first view is sampled from U(−180◦, 180◦) and the remaining views
are uniformly distributed to cover the entire range with 90◦ offsets. We keep the
batch size at 4 and enable soft shading from the first iteration.
The multi-resolution hash grid has 16 levels with each 2 features and a base reso-
lution of 16. The feature MLPs for albedo color and background color consist of a
single hidden layer of width 64 with ReLU activation and a 3-channel (RGB) output
layer with sigmoid activation. We use the AdamW optimizer [34, 47] with the coeffi-
cients 𝛽1 = 0.9, 𝛽2 = 0.99, the term 𝜀 = 1×10−15 for numerical stability, and weight
decay 𝜆 = 0.01. We set the learning rate for the shape parameters 𝒛 and the multi-
resolution hash grid encoding to 𝛾𝒛 = 𝛾encoding = 0.01, and the learning rate of
the MLP albedo network and the background to 𝛾albedo = 𝛾background = 0.001. All
remaining hyperparameters are kept to the default in MVDream. The entire SDS
optimization takes around 20 minutes on an Nvidia Tesla A100 GPU.

5.2 Multi-view Contrastive Language-Image Pre-Training
Similarity Score

Evaluating the quality of 3D generative models is a challenging task, primarily be-
cause the most commonly used metrics – Fréchet Inception Distance (FID) [21],
Inception Score (IS) [61], Contrastive Language-Image Pre-Training (CLIP) Score
[57], and CLIP R-Precision [54] – are designed for assessing 2D images rather
than 3D objects. FID and IS are effective at measuring the quality and diversity
of generated images but fall short when evaluating how well a 3D mesh adheres
to its intended structure. These metrics operate solely on 2D projections, ignoring
the inherent 3D nature of the objects they represent. The CLIP score and CLIP
R-Precision, on the other hand, assess the alignment between a generated image
and a textual prompt, yet both metrics also fail to account for the 3D coherence
of the object across different views. None of these evaluation criteria adequately
capture the full spatial and structural consistency that is critical when evaluating 3D
meshes.
There are also metrics that measure the shape dissimilarity between point clouds,
such as the Chamfer Distance. However, the Chamfer Distance requires a dataset
of diverse ground truth captioned meshes, which we do not have for our generative
task. Therefore, we extend the standard CLIP score to better assess 3D meshes
by considering multiple views of an object. The multi-view CLIP score (MV-CLIP)
metric interpolates the embeddings from different views of the 3D object, providing

42

5.2 Multi-view Contrastive Language-Image Pre-Training Similarity Score

a more holistic measure of how well the object adheres to its corresponding textual
prompt across various perspectives.
We introduce a new notation only for this section to avoid cluttering the vari-
able names with too many sub-labels. Let 𝒚 represent a textual prompt and
𝒙1, 𝒙2, . . . , 𝒙𝑁 } denote a set of 𝑁 images corresponding to different views of a
3D mesh. For each view 𝒙𝑖, we obtain the corresponding image embedding v𝑖
using a pre-trained CLIP model:

v𝑖 = CLIPimage(𝒙𝑖), (5.1)

where v𝑖 ∈ R𝐵×512 with batch size 𝐵. Then, we compute the text embedding u for
the prompt 𝒚 using the same CLIP model

u = CLIPtext(𝒚), (5.2)

and interpolate the image embeddings by averaging the unnormalized embeddings

vinterpolated =
1

𝑁

𝑁∑︁
𝑖=1

v𝑖. (5.3)

Next, we normalize the interpolated image embedding and the text embedding:

v̂interpolated =
vinterpolated

∥vinterpolated∥
and û =

u

∥u∥ . (5.4)

We compute the cosine similarity between the normalized embeddings and apply
a learned scaling factor 𝜎 from the CLIP model:

MV-CLIP = 𝜎 · v̂⊤interpolatedû. (5.5)

Furthermore, we can also derive a MV-CLIP win ratio, which compares a set of
generative models (baselines) by sampling one mesh from each model and count-
ing the fraction of times where MV-CLIP retrieves the mesh that corresponds to
each model (the winner model) given the text prompt. The MV-CLIP win ratio can
thus be interpreted as a precision score of a MV-CLIP retrieval system, which op-
erates on a set of distractors – the outputs of each baseline – that compete with
each other to maximize their likelihood of being selected.
It is important to note that while the proposed metrics offer a more comprehensive
assessment than existing 2D metrics, it remains a proxy metric for text-to-mesh
alignment and does not capture the quality of the 3D model. The MV-CLIP met-
ric primarily evaluates how well the model’s visual outputs align with the prompt
across different views, but it does not measure the true 3D coherence or physical
accuracy of the generated mesh.

43

5 Experiments

5.3 Text-to-3D Asset Generation

The core application of our method is text-to-3D asset generation. In this section,
we show a selection of sampled meshes and benchmark our method with other
state-of-the-art text-to-3D models both qualitatively and quantitatively.

(a) “9-month pregnant woman of color”

(b) “An elf princess with pointy ears and long fingernails”

(c) “John Cena with a beer belly”

(d) “Female sumo wrestler”

(e) “Male sumo wrestler”

Figure 5.1: Front, left, back, and right orthographic views of meshes synthesized with our
method. Each view is rendered in MeshLab [11] with and without albedo texture to capture
the geometric detail of the shape surface. The meshes are generated by appending the
string “, shaved head, wearing a tank top” to the labels in the captions.

Qualitative analysis. In Fig. 5.1, we display a set of of sampled meshes across
four different views that cover the entire azimuth range uniformly. The examples
cover a wide variety of genders and body shapes. We render the colored mesh with
albedo map and the textureless mesh with shading effect. The untextured image
allows to better recognize the structural detail of the surface. Otherwise, potential
artifacts like unsmooth surfaces, holes, extrusions, or fused body parts could be

44

5.3 Text-to-3D Asset Generation

hidden by the albedo texture. More results can be found in Fig. 8.2 in Appendix 8.3,
which extends the selection of samples that we present here.
Performing a qualitative analysis of the output meshes exhibited here, we see a
rich variety of output shapes and textures. The synthesized meshes are coherent
with the provided prompt and can be used directly in industrial applications with-
out requiring post-processing. The quadrangular topology of the outputs holds up
to high quality standards for realistic surface deformation and efficient rendering.
Moreover, the anatomy of the body shapes is highly plausible: all characters have
five fingers in the hands and feet, the bodies are quasi-symmetrical along the sagit-
tal plane (small-scale asymmetries that occur in the real world like nose bending,
irregular head shape, or slightly differently long limbs are still supported), and the
meshes are multi-view consistent and do not suffer from fused or self-intersecting
elements. Interestingly, the anatomical accuracy of the 3D humanoids may even
outperform that of 2D image diffusion models, which are known to produce un-
canny faces and unrealistic hands and limbs [55]. To the best of our knowledge,
the detail around facial features or muscles is unparalleled by any other text-to-3D
generative model that relies on neural fields as a scene representation.

Qualitative benchmarks. We benchmark our method against existing baselines,
such as DreamFusion [56], Magic3D [41], and MVDream [67]. We use the imple-
mentations available through threestudio [18], which is not the official implementa-
tion in the case of DreamFusion and Magic3D. There are some differences that we
list here. On the one hand, DreamFusion officially uses Imagen [60] and Magic3D
leverages eDiff-I [5], which are both diffusion models that are not publicly available.
Instead, we use the open-source StableDiffusion v2.1 latent diffusion model [58]
in both cases. Furthermore, we use InstantNGP [52] instead of mip-NeRF [7] as
the scene representation for DreamFusion. For MVDream on the other hand, the
implementation in threestudio is officially supported.
The selected baselines are particularly interesting for our evaluation setting, not
only because of their state-of-the-art performance in text-to-3D mesh synthesis,
but also because they share several technical details with our pipeline. DreamFu-
sion introduces the concept of SDS, which lies at the core of our method. Magic3D
also uses both multi-resolution hash encoding and mesh rasterization for the differ-
entiable renderer. However, instead of directly combining both scene representa-
tions into a single differentiable renderer like we do, Magic3D applies two separate
optimization stages instead. The first stage extracts a coarse mesh from the neu-
ral field, and the second part refines the mesh. Finally, the central contribution
of MVDream is to finetune StableDiffusion with minimal modifications to the self-
attention layers of the denoising U-Net [59] to enable multi-view image synthesis
with enhanced 3D consistency. We use the multi-view diffusion network from MV-
Dream for as our diffusion prior.

45

5 Experiments

In Fig. 5.2, we observe that our method is the only of the four that outputs clean and

D
re

am
Fu

si
on

M
ag

ic
3D

M
VD

re
am

O
ur

s

(a) “Simone Biles with a beer belly”

D
re

am
Fu

si
on

M
ag

ic
3D

M
VD

re
am

O
ur

s

(b) “A young Peruvian soccer player with an athletic build”

Figure 5.2: We benchmark our method (fourth row) against DreamFusion [56] (first row),
Magic3D [41] (second row), and MVDream [67] (third row). As seen in the first column, ours
is the only approach capable of synthesizing meshes with clean topology. The remaining
eight columns show front, left, back, and right orthographic views rendered in MeshLab [11]
with and without albedo texture. Our method uniquely produces smooth surfaces and
realistic body anatomy. All meshes are generated by appending the string “, shaved head,
wearing a tank top” to the labels in the captions.

consistent topology. The high-polygon, irregular triangular topology of the meshes
extracted from the volumetric representations of our baselines makes the meshes
unsuitable for production use without extensive manual refinement. Besides ren-
dering performance issues, the topology is inherently problematic for deformation,
as the angular and irregular creases around edge loops lead to folds that disrupt

46

5.3 Text-to-3D Asset Generation

Model MV-CLIP B/32 (↑) MV-CLIP B/32 win ratio (↑)
Color Shape Color Shape

DreamFusion 23.80 22.15 0 0.3

Magic3D 22.60 20.5 0 0.3

MVDream 25.22 21.84 0.16 0

Ours 26.68 22.42 0.83 0.3

Table 5.1: We evaluate the multi-view alignment of generated meshes with their correspon-
ing text prompt. We measure the MV-CLIP Score and the MV-CLIP win ratio on textured
renderings (color) and textureless shading renderings (shape) respectively. Due to com-
pute constraints, we only run one seed per prompt.

smooth movement and animation. Moreover, both DreamFusion and Magic3D suf-
fer heavily from artifacts like the Janus problem and content drift, which is illustrated
in the concrete example in Fig. 5.2b. First, for DreamFusion, we see that the the
arms of the soccer player fade and merge into the shirt, where there is no clear sep-
aration between different body parts. There is no recognizable anatomical structure
in the torso of the soccer player in the textureless shading rendering, which exposes
the underlying shape of the mesh. Second, Magic3D produces only the shirt of the
soccer player, but without the human that wears it. Even for the side views, the shirt
appears to be rendered from a frontal or posterior view, where both sleeves are vis-
ible to the left and right. In general terms, MVDream meshes demonstrate much
higher perceptual quality compared to the previous baselines and do not display
apparent multi-view inconsistencies. Nevertheless, the surface is highly unsmooth,
the texture looks over-saturated, mesh elements that are in close proximity to each
other fuse together, and there is missing detail around areas like the fingers in the
hands. A figure with additional prompts for comparison with the baselines can be
found in Fig. 8.3 in Appendix 8.3. In the additional examples, DreamFusion and
Magic3D fail to produce any meaningful output in certain cases, where either no
mesh is extracted by the isosurface algorithm or the mesh consists of floating blobs
of material that do not appear to display any recognizable pattern. All in all, we find
our method to be most reliable and produce the most natural colors, realistic and
anatomically accurate shapes, predictable geometry with artist-designed topology
and UVs, and closest alignment with the input prompt.

Quantitative benchmarks. Our qualitative findings are further supported by a
quantitative analysis in Tab. 5.1, where we measure the MV-CLIP metric and the
MV-CLIP win rate introduced in Sec. 5.2. Both scores indicate a better match be-
tween the sampled mesh and the input prompt as the values increase. Due to
compute restrictions, we calculate the scores on a test set of 6 prompts with fixed

47

5 Experiments

seed and use the official CLIP ViT-B/32 checkpoint [57]. Following DreamFusion,
we consider fully shaded renderings with albedo texture (color) and without tex-
ture (shape). The untextured renderings show the true shape of the synthesized
mesh, which can otherwise be camouflaged by the albedo texture. Textureless im-
ages are likely out of the training distribution of the CLIP ViT-B/32 network, which
suggests that the measure on the shape renderings could be more unpredictable.
However, we still find the score on the shape to be an informative proxy metric.
Our method clearly outperforms all the baselines across all metrics and ties with
DreamFusion and Magic3D in MV-CLIP win ratio for shape. The average MV-CLIP
score is considerably higher for our method compared to the other ones, both for
color and for shape. Out of the six examples in the training dataset, our method
wins on the colored mesh retrieval task with MV-CLIP score five times, and MV-
Dream wins the remaining one. For shape, DreamFusion, Magic3D, and ours each
win one time.
Despite all the positive findings, we still want to highlight that our method has a
unique disadvantage. Our generative framework is not capable of modeling gar-
ments, hair, or accessories in shape space. Furthermore, like all the baselines,
our method also inherits the gender and racial bias from the pre-trained 2D diffu-
sion prior. We find that most prompts tend to generate Caucasian males by default
unless we specify it otherwise in the prompt.

5.4 Output Editing

(i) (ii) (iii) (iv) (v)

Figure 5.3: We show the original output in (i). In (ii) we drive the PC 1 down, making the
character shorter, and in (iii) we raise the coefficient of PC 2, which creates a wider figure.
In (iv) and (v), we switch the textures of the original mesh in (i) with the textures from other
generated models.

Our proposed framework has the property that shape and appearance are disen-
tangled in the generation process. The shape is controlled by the parameter vector
𝒛 that drives the 3DMM in the geometric prior (Sec. 4.2), while the appearance is
determined by the parameters 𝜽 of the InstantNGP [52] at the core of the differ-
entiable renderer (Sec. 4.3). Therefore, one more advantage of using the shape
space of a 3DMM for mesh generation is that the output shapes are interpretable.

48

5.5 Interchangeability of the Geometric Prior

Specifically, we can investigate the coefficient vector 𝝈𝝓 (𝒛) associated with a syn-
thesized mesh to assess how much each PC contributes to the generated shape.
This observation enables an additional manual editing workflow, where we can
drive individual PCs up or down to modulate their impact on the output shape. Fur-
thermore, all meshes are mapped to the same UV space, making it also uniquely
possible to switch textures between generated assets.

Shape editing. For example, we take the pregnant woman in Fig. 5.1a and mod-
ify her shape. We store the vector 𝝈𝝓 (𝒛) as additional output and make the obser-
vation that PC1 has a large contribution of 𝜎𝝓 (𝑧1) = 2.89, which seems to make
the character tall (see Fig. 4.4a). We decrease the parameter that modulates the
contribution of PC 1 to 𝜎𝝓 (𝑧1) = −1.64 to make the figure shorter. In the same way,
we also increment the magnitude of PC 2 from 𝜎𝝓 (𝑧2) = 1.59 to 𝜎𝝓 (𝑧2) = 2.99,
which appears to be correlated with the width of the character (refer to Fig. 4.4b).
We display the modified meshes in Fig. 5.3 at (ii) and (iii).

Exchanging textures. Since all meshes share a common UV space, all textures
can be exchanged between characters. Again, we select the pregnant woman in
Fig. 5.1a as an example and apply the textures of the elf princess from Fig. 5.1b
and John Cena from Fig. 5.1c. The results can be found in Fig. 5.3 at positions (iv)
and (v).

5.5 Interchangeability of the Geometric Prior

One core limitation of our method, as compared to existing baselines, lies in our cur-
rent focus on generating class-specific assets, which we demonstrate in Sec. 5.3
with human body shapes. Therefore, it is crucial that our generative framework is
compatible with other geometric priors to extend its applicability to different classes.
We verify the interchangeability of the geometric prior by using another 3DMM,
namely the ICT-FaceKit [39]. This model is a highly detailed facial framework fea-
turing physically-based attributes, quad-dominant topology, and tiled UV unwrap-
ping.
For our experiment, we use the ICT Face Model Light, which includes 100 blend
shapes for identity and 53 for expression. However, we chose to freeze the ex-
pression parameters, as our primary focus lies in generating the 3D face’s shape
and appearance. Importantly, we keep all the hyperparameters exactly the same
as the ones reported in Sec. 5.3, ensuring that the compatibility is provided out
of the box. Since we do not have an AABB available as with our own 3DMM for
humans, we empirically set the limits to 𝑎𝑖 = −6.0 and 𝑏𝑖 = 6.0 for 𝑖 = 1, 2, . . . , 100.
To better align the generated outputs with the facial focus of the model, we omit

49

5 Experiments

(a) “a chubby Buddhist monk”

(b) “An ogre with a big nose”

(c) “A beautiful person”

(d) “Angela Merkel”

(e) “Dwayne Johnson”

Figure 5.4: Front, left, back, and right orthographic views of meshes synthesized with our
method. Each view is rendered in MeshLab [11] with and without albedo texture to capture
the geometric detail of the shape surface. The meshes are generated by prepending the
string “portrait of ” and appending the string “, shaved head” to the labels in the captions.

the phrase “wearing a tank top” from the template prompt. The face model does
not include the torso or extremities, which are prone to occlusion by non-tight or
thick garments. Nevertheless, we still find it useful to prepend the phrase “portrait
of ” and append “, shaved head” to guide the diffusion model to generate facial
close-ups (as opposed to, e.g., full body images) and avoid the generation of hair,
for which there is no geometry available in the face model. Example results are
presented in Fig. 5.4, with additional samples in the extended version in Fig. 8.4 in
Appendix 8.3.
We observe that our method seamlessly integrates with the ICT-FaceKit, achiev-
ing a high degree of perceptual quality and prompt alignment without requiring
any modification to the framework. We find both the shape and the appearance
of the output meshes to be faithful perceptual representations of the provided in-

50

5.6 Interchangeability of the Diffusion Prior

put prompt. These results align closely with our observations for full human body
meshes, as discussed in Sec. 5.3. All of the outputs that we observe are 3D co-
herent and consistent from different perspectives, demonstrating that our method
successfully surpasses the uncanny valley. The high quality of the provided topol-
ogy and UVs provided by the ICT FaceKit make these meshes immediately suitable
for production applications. However, we still find some undesired artifacts such
as the shading being baked into the albedo map, blurry spots in the textures, and
partially unrealistic body proportions, especially around the neck, as in Fig. 5.4c.
While we have successfully demonstrated the interchangeability of the geometric
prior using another 3DMM, there is no theoretical limitation preventing the applica-
tion of other point distribution models. This flexibility highlights the broader potential
of our approach across various domains.

5.6 Interchangeability of the Diffusion Prior

We point out that our method is also compatible with different diffusion priors. We
find experimentally that MVDream [11] generally yields better results than single-
view image diffusion models. However, this finding is not necessarily always the
case. For instance, in Fig. 5.5, we ablate using StableDiffusion v1.5 [58] and Real-
isticVision v6.0 [64], which is a low rank adaptation (LoRA) [27] of StableDiffusion
v1.5 finetuned for enhanced realism, instead of MVDream as the diffusion prior.
Particularly, the examples shown in Fig. 5.5 provide meaningful and varied results
that have arguably even better prompt alignment than the baseline in Fig. 5.5b.
Potential use-cases of using a different diffusion prior go beyond the generation of
variations (MVDream has a tendency to converge to similar modes across differ-
ent runs with a fixed prompt, even when the seed is changed). We demonstrate in
Fig. 5.5 how the style of the output is also affected by the choice of the diffusion
model. Therefore, different LoRAs and models finetuned by the open-source com-
munity can be plugged into our 3D generative framework to achieve stylized results
with a higher degree of control than prompt engineering. Another possible appli-
cation involves alleviating undesired bias in the diffusion prior by using different
checkpoints that address the issue.

5.7 Ablation Study

We ablate two choices that we make for the geometric prior. First, we show that
AABB clipping is necessary for the SDS optimization to converge to shapes that
adhere to the structural patterns of the 3DMM. Second, we also explore a different
basis for the 3DMM that is not orthogonal and uncorrelated by doing interpolation
with the raw blend shapes in the dataset instead of using the PCs.

51

5 Experiments

O
ur

s
+

M
VD

re
am

O
ur

s
+

SD
1.

5
O

ur
s

+
RV

6.
0

(a) Prompt: “slender bodied female aquatic gymnast, lean and athletic”.

O
ur

s
+

M
VD

re
am

O
ur

s
+

SD
1.

5
O

ur
s

+
RV

6.
0

(b) Prompt: “very tall troll, ugly looking, green skin, lizard, humanoid”.

Figure 5.5: The effect of using different diffusion priors. From top row to bottom
row, we utilize MVDream [67], StableDiffusion v1.5 (SD1.5) [58], and RealisticVision
v6.0 (RV6.0) [64]. In each row, we display front, left, back, and right orthographic views
of meshes synthesized with our method. Each view is rendered in MeshLab [11] with and
without albedo texture to capture the geometric detail of the shape surface. The meshes
are generated by appending the string “, shaved head, wearing a tank top” to the labels in
the captions.

Removing AABB clipping. We find empirically that AABB clipping greatly im-
proves the quality of the sampled meshes. As evidenced in Fig. 5.6, without
AABB clipping, the sampled meshes still look similar to the ones in our baseline.
Upon closer inspection, we see however that the surfaces are highly unsmooth
and anatomically incorrect. We attribute this finding to the fact that the generative
framework aims to stretch the available mesh surface to model accessories and
items of clothing that are not captured by the 3DMM. In turn, we consider AABB
clipping to better preserve the patterns of the data used to create the 3DMM. As
we discuss in Appendix 8.1, there is no mathematical guarantee that AABB clip-

52

5.7 Ablation Study

Ours Ours without AABB clipping Ours with raw blend shapes

(a) “A Medieval Mongolian queen. She is obese and lives a sedentary life, but projects power and
glory through her appearance”

Ours Ours without AABB clipping Ours with raw blend shapes

(b) “A Medieval European King. He is obese and lives a sedentary life, but projects power and glory
through his appearance”

Figure 5.6: We ablate the need of using AABB clipping and using a shape space that is
not orthogonal and uncorrelated. On the left, we show results of our method as described
in previous sections. At the center, we remove AABB clipping. On the right, we use raw
blend shapes instead of the PC basis for the 3DMM. For each ablation, we present the
textured rendering with albedo map and the untextured rendering. It is apparent that the
performance of our approach deteriorates significantly with each ablation. All results are
generated by appending the string ‘, shaved head, wearing a tank top” to the labels in the
captions.

ping guides the SDS process to the manifold of the data: performing search in the
shape space constrained by the AABB is not equivalent to seeking in the manifold
of the dataset. The volume of the space defined by the AABB is several orders of
magnitude larger than that of the convex hull of the data. We suspect that a con-
siderable portion of the synthesized meshes extrapolates the dataset, although it is
prohibitively expensive to explicitly compute the convex hull of our high dimensional
dataset.

Using raw blend shapes instead of PCs. In Sec. 4.2.1, we make the case that
performing PCA over the dataset, even without considerable dimensionality reduc-
tion, improves the optimization landscape because it spans an orthonormal basis
of the dataset. We verify that the optimization landscape is considerably worse with
a different basis by taking the raw dataset as a 3DMM. Instead of using the PCs,
we span the shape space with the difference vectors of the raw blend shapes in the
dataset with respect to the average mesh (i.e., the data matrix ∆S in Sec. 4.2.1).
In this case, the AABB trivially becomes 𝑎𝑖 = 0 and 𝑏𝑖 = 1 for 𝑖 = 1, 2, . . . |𝐷 |. As
displayed in Fig. 5.6, the raw blend shape space is not suited for optimization via

53

5 Experiments

gradient descent. Outputs become very exaggerated and shapes are driven to the
extreme. We further observe that even minimal modifications in the prompt can
lead to very different results, turning the model highly unpredictable.

54

6 Discussion

In this chapter, we discuss the implications of the presented results. We also eval-
uate the limitations of our method and explore future lines of research. Lastly, we
examine the ethical considerations of our method.

6.1 Implications

Current research in text-to-3D generative models focuses on improving the qual-
ity of the images that are rendered from some 3D representation and on solving
qualitative problems, such as the Janus problem and content drift. Since meshes
do not offer the degree of flexibility that neural field representations do, which can
differentiably render practically any 3D scene with a high degree of fidelity, most
concurrent approaches choose neural fields similar to NeRFs [50] as their 3D rep-
resentation. A mesh surface can then be extracted from the neural field with an
isosurface algorithm. Even though mesh extraction is a destructive operation (due
to the discretization of a continuous representation) and it recovers meshes with
triangular and irregular topology, most of the metrics used to assess the quality of
a 3D object operate in image space. It is hard to quantify the quality of the topol-
ogy, skinning weights and UVs, or the perceptual quality of a 3D mesh as a whole.
However, these features that cannot be measured are critical for real-life users,
because game and rendering engines that are commercially available and widely
adopted cannot render neural fields (with the exception of Gasusian Splatting) and
rely on 3D meshes. Therefore, there is a gap between academic research and
industry needs.
In this work, we bridge the aforementioned disconnect between academia and in-
dustry and propose a generative framework that strikes a trade-off between flexibil-
ity and output quality. By using a 3DMM as a geometric prior, we make it possible to
sample meshes with artist-designed topology, skinning weights, and UVs. Thus,
our model can sample operational meshes at the cost of being restricted to the
shape space of the 3DMM. Furthermore, the 3DMM also acts as a prior over the
shape space, resulting in meshes that exhibit a high level of detail and realism in
their shapes. For color, we use a neural field that is versatile and is not limited in
texture space. In our quantitative analysis, we find that our method outperforms all
previous baselines on multi-view prompt alignment. In addition, we observe qual-
itatively that the output meshes from our approach have smoother surfaces, and

55

6 Discussion

are anatomically accurate and consistent across different views. We also motivate
the choice of a low CFG scale that is close to the optimal value used for image
synthesis, which solves the problem of over-saturated colors in textures.
Beyond the results that we show in Chapter 5, we also highlight one more unique
advantage of our generative framework, which is consistency. Not only is con-
sistency important to ensure stylistic coherence within a compositional scene, but
also for technical reasons. All output meshes share the same topology for a fixed
3DMM, which means that all accessories that an artists builds for one of the meshes
can be shared across all meshes. For example, a garment that tightly fits one body
shape can be fit to another body shape by interpolating the deformation field be-
tween the point clouds of the two body meshes on the point cloud of the garment.
In the same way, the UV space and skinning weights are shared between meshes,
allowing to easily apply different textures and animations from a shared library.

6.2 Limitations and Future Work

Our method is capable of synthesizing production-ready meshes, but there are still
some limitations that need to be addressed in future work to enhance the useful-
ness of the model. We consider issues that limit the range of applications of our
generative pipeline for widespread adoption and propose approaches to resolve
them.

The model is constrained by the expressivity of the 3DMM. Our generative
model is restricted to the shape space of the 3DMM. It is not possible, for instance,
to prompt the model to create a bird when the 3DMM represents humanoids. Nev-
ertheless, we show in Sec. 5.5 that the geometric prior can be interchanged with
other 3DMMs without requiring any modification to the framework or the hyperpa-
rameters. Thus, a simple preprocessing step could be added that classifies the
text prompt via natural language processing to use one out of a set of available
3DMMs. Building new 3DMMs has recently become more accessible with mesh
registration algorithms [4, 45] that allow to register a template topology to a dataset
of meshes that have inconsistent topology, such as scanned 3D objects. It would
also be highly valuable to extend our 3DMM to also capture garments and polygo-
nal hair, potentially as separate mesh components.

Output meshes are not fully rigged. Meshes have to be rigged in order to be
animatable. The rig is composed mainly of two components: a skeleton and a
set of skinning weights. The skeleton defines a bone hierarchy that determines
the pose of the mesh. All vertices have a skinning weight for each bone, which
encodes the influence of each bone’s translation and rotation (relative to the resting

56

6.2 Limitations and Future Work

to pose). The position of the vertex can then be computed via linear blend skinning
or dual quaternion skinning [31]. Since the skinning weights are vertex attributes
and the connectivity of the output mesh is fully characterized by the 3DMM, the
skinning weights can be specified by an artist at design time. However, the position
of the bones has to be predicted for the output mesh to be fully rigged, which is a
regression problem that can be solved given enough labeled data.

Textures are not PBR. Our method is able to predict albedo maps with realistic
colors, although it does not achieve photorealism. In addition, it is still possible that
the texture represents features that do not correspond in space with the underlying
shape of the mesh, as seen in Fig. 5.4 around the eyes of some examples (e.g.,
Angela Merkel’s eyes appear to be painted below the geometry reserved for the
eyeballs). Furthermore, the albedo map still portrays some shading effects. In
follow-up work, we suggest to include available PBR textures in the 3DMM, as
in [14]. This way, the geometric prior would define a prior not only over the shape
space and the geometrical structure of the mesh graph, but also over the texture
space. In this scenario, the differentiable renderer can be simplified to directly
sample the color from the UV space instead of using the feature network with multi-
resolution has encoding. Further adaptations need be made to support PBR effects
differentiably via [37] to efficiently search within the blend space of PBR textures.

Generation time is slow. As mentioned in Sec. 5.1, it currently takes almost
20 minutes for SDS to converge over 7000 iterations on an Nvidia Tesla A100
GPU. While the generation time is still considerably faster than all our baselines,
which can take hours on the same hardware, we still see room for improvement.
The reason why we need the slow SDS optimization is that diffusion models are
inconsistent from multiple views, which prevents us from directly fitting the mesh
via reconstruction loss with a set of diffused images that cover the entire visible
surface of the 3D object. Architectures like SyncDreamer [44] and MVDream [67]
boost the multi-view consistency of the diffusion model, but the issue remains and
it is still not possible to directly fit the 3D mesh in a single iteration. In principle,
the mechanism that is needed for multi-view consistency in diffusion models is
the same that enables spatio-temporal consistency in video diffusion models. The
problem of diffusing multiple views of an object is equivalent to diffusing a video
where the camera rotates around the object. For example, Chen, Marti Monso, et.
al [10] propose a training paradigm for diffusion models that shows great promise
for autoregressive video synthesis. We could use that approach to train a diffusion
prior with strong multi-view consistency that enables single-step reconstruction for
fast mesh synthesis, similar to Cat3D [16].

57

6 Discussion

Language. The diffusion priors that we use are trained on English captions and
may not work in other languages. We demonstrate in Sec. 5.6 that the diffusion
prior can be interchanged, which allows using diffusion models trained on other
languages.

6.3 Ethics

Dataset copyright. The dataset that we use to create our 3DMM is a proprietary
dataset that is fully licensed. All remaining models that we evaluate (3DMMs and
diffusion priors) have also been trained on licensed datasets.

Safety. Our 3D generative model inherits the capability of the diffusion prior to
generate NSFW content. We advise to use the model responsibly. Optionally,
available NSFW filters can be enabled at the cost of potentially hurting model per-
formance.

Bias and fairness. As we discuss in Sec. 5.3, our method also takes over the bias
of the diffusion priors that we use. We observe that the model captures social bias
present in cultures that use the English language, because the diffusion models
are trained on datasets with English captions.

Environment. We do not train any diffusion model ourselves and leverage pre-
trained components only. Inference takes about 20 minutes on an A100 SXM4
80GB and we use Google Cloud Platform as our cloud provider on the us-central1
compute region. Using the Machine Learning Emissions Calculator from [36], we
estimate 0.07 kg CO2 eq. per sampled mesh. These emissions are entirely offset
by the cloud provider.

Impact on employment. Generative models are often perceived as a threat to
the labor market. We do not aim to substitute technical artists or creators, but rather
to empower their workflows by providing cost-efficient tools that assist them with
technical tasks and enable them to unleash their creativity. Media creators and
artists can spend more time designing art concepts, interactions, and processes
without being hindered by the deep 3D modeling skills required to generate 3D
assets. We believe that more people will be able to participate in the industry of 3D
content creation by lowering the barrier of entry, which will drive progress and new
developments across various sectors in the entertainment sector and beyond.

58

7 Conclusion

In this work, we address the core limitation of text-to-3D mesh generative models
to be useful in production settings. We make the observation that 3D neural field
representations are not suited to represent the structural properties of mesh sur-
faces. Instead, we propose a generative model that directly samples high-quality
3D meshes by combining a 3DMM with a multi-view diffusion prior. The SDS
guidance signal is backpropagated through a differentiable mesh renderer into the
shape space of the 3DMM and into an MLP with multi-resolution hash encoding for
point color.
We implement our method around our own 3DMM that we derive from a dataset
of humanoid blend shapes. Then, we benchmark our approach against a set of
baselines and demonstrate higher correspondence between the input prompt (con-
strained to humanoids) and the output mesh, measured on the MV-CLIP score
that interpolates the CLIP image embeddings across different views to account for
multi-view coherence. The meshes sampled with our generative framework have
artist-designed quadrangular topology, UVs, and skinning weights. Moreover, the
shapes display a high degree of realism and anisotropic surface detail. We justify
that our method can run SDS with optimal CFG scale for image synthesis because
the geometric prior restricts the shape space in a way that facilitates mode seeking.
As a consequence of the lower CFG coefficient, the colors in our albedo textures
are not oversaturated, as is usual in SDS models.
One trade-off of our generative model is that it is limited to prompts and assets that
can be represented in the shape space of the 3DMM at use. Thus, we show that our
framework is compatible with other 3DMMs (e.g., for human faces) and diffusion
priors, which enhances the versatility of the model. Furthermore, output meshes
are interpretable in the sense that the output geometry can be fully explained by the
parameter vector that controls the contribution of each PC. Therefore, the mesh can
be easily edited by manually adjusting the coefficients without affecting the texture.
Similarly, textures can be exchanged between sampled outputs, as the meshes
share a common UV space. At last, we also ablate some choices that we make for
the geometric prior, such as AABB clipping and the selection of an orthogonal and
uncorrelated basis for the shape space.
Finally, we highlight possible improvements for follow-up work that would amplify
the usability of output meshes, such as including PBR materials in the 3DMM,
adding garments and hair to the 3DMM, regressing the skeletal rig, or using video
diffusion architectures that strengthen the multi-view consistency of the diffusion

59

7 Conclusion

prior for faster predictions. All in all, we bridge a critical disconnect between aca-
demic research and user needs, and aim to contribute to the adoption of auto-
mated mesh generation workflows in real-life applications to alleviate the burden
on technical artists and lower the barrier of entry to 3D content creation, potentially
enabling novel use cases.

60

8 Appendix

8.1 Analysis of the Shape Space Constrained by the
Axis-Aligned Bounding Box

(a) PCs 0 and 1. (b) PCs 20 and 21.

(c) PCs 50 and 51. (d) PCs 80 and 81.

(e) Cumulative intersection ratio between the
volume of the convex hull and the volume of the
AABB plotted over the number of PCs.

Figure 8.1: We analyze the space occupied by the convex hull and that of the AABB of the
data when projected to the shape space spanned by the PCs. Figs. 8.1a–8.1d show both
manifolds and the contained data points plotted over two dimensions (note the zero-base
encoding of the labels). Figure 8.1e displays how the intersection ratio between the two
volumes decreases exponentially as the number of PCs increases.

We make the empirical observation that the intersecting volume between the
convex hull of the dataset projected to the PC space and its AABB converges to
0 extremely rapidly. Despite the fact that the intersection area seems to be large
for any two randomly selected dimensions (Figs. 8.1a–8.1d), the intersection ra-
tio of the two volumes is practically 0 after adding as little as seven dimensions
(Fig. 8.1e). Computing the actual intersection volume of the full 100-dimensional
space becomes intractable.
An intuitive geometrical explanation could be that the convex polytope defined by
the convex hull is contained by a sphere of finite radius. The volume of an 𝑛-ball of
fixed radius tends to a limiting value of 0 as 𝑛 goes to infinity [76]. However, we find
experimentally that the volume of the convex hull diverges, suggesting that the rea-

61

8 Appendix

soning does not apply. Instead, we note that for any two PCs 𝑖, 𝑗 ∈ {1, 2, . . . , 100}
with 𝑖 ≠ 𝑗 , the intersection ratio 𝛼𝑖, 𝑗 between the convex hull area and the AABB
area is bound by 0.379959 ≤ 𝛼𝑖, 𝑗 ≤ 0.887392. Thus, the intersection ratio over
the number of dimensions 𝑛 is lower bound by the function 0.379959𝑛 and upper
bound by 0.887392𝑛, showing that the decay is truly exponential. For 𝑛 = 100, we
find that there is a difference of at least 6 orders of magnitude (taking the upper
bound) and up to 43 orders of magnitude (taking the lower bound) between the
two volumes. Although both values are subject to numerical errors and potentially
inaccurate, we show that most of the shape space of the geometric prior is ex-
trapolating with respect to the original data and only an almost negligible portion is
actually interpolating.

8.2 Derivation of the Score Distillation Sampling
Decomposition

Here, we derive the decomposition of the SDS gradient ∇𝒛LSDS in Eq. (4.13). We
start by rewriting the classifier-free guidance from (3.10):

𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) = (1 + 𝑤CFG)𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝑤CFG𝜺𝝓 (𝒙𝑡 ; 𝑡) (8.1a)
= 𝑤CFG

(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
+ 𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) (8.1b)

= (𝑤CFG + 1)
(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
+ 𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡)

−
(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
(8.1c)

= (𝑤CFG + 1)
(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
+ 𝜺𝝓 (𝒙𝑡 ; 𝑡). (8.1d)

The initial expression (8.1a) is the equation for classifier-free guidance (3.10) as
originally formulated by [23]. Then, step (8.1b) follows by the distributive property
and in (8.1c) we add the zero-term

+
(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
−
(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)
= 0.

Next, we simplify the expression in (8.1d) by cancellation. Finally, we insert the
newly obtained expression for the classifier-free guidance 𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) into the equa-
tion for the SDS gradient (3.11):

∇𝒛LSDS = E𝑡 ,𝜺

[
𝑤(𝑡)

(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺

) 𝜕𝒙𝑡
𝜕𝒛

]
(8.2a)

= E𝑡 ,𝜺

[
𝑤(𝑡)

(
(𝑤CFG + 1)

(
𝜺𝝓 (𝒙𝑡 ; 𝑦, 𝑡) − 𝜺𝝓 (𝒙𝑡 ; 𝑡)

)) 𝜕𝒙𝑡
𝜕𝒛

+𝑤(𝑡)
(
𝜺𝝓 (𝒙𝑡 ; 𝑡) − 𝜺

) 𝜕𝒙𝑡
𝜕𝒛

]
(8.2b)

= ∇𝒛Lproj + (𝑤CFG + 1) ∇𝒛Lcond . (8.2c)

62

8.2 Derivation of the Score Distillation Sampling Decomposition

Again, the initial expression (8.2a) is the equation for the SDS gradient (3.11) as
originally formulated by [56]. In step (8.2b) we insert Eq. (8.1d) and apply the
distributive property. We obtain Eq. (8.2c), which is equivalent to Eq. (4.13), by the
linearity of expectation (and the fact that 𝑤CFG is constant), the substitution of Lproj
from (4.13a) and Lcond from (4.13b), and the commutative property.

63

8 Appendix

8.3 Extended Results

64

8.3 Extended Results

(a) “6 year old girl, lean, gymnast, happy, rosy cheeks”

(b) “dad body”

(c) “A woman from southern India, she is very traditional, hinduist, 43 years old, serene expression”

(d) “A very young Roman soldier wearing his armor. He is short, weak, and inexperienced, you can
tell he is not ready for the battlefield.”

(e) “a female bodybuilder, muscular, buffed, strong and femenine”

(f) “Very old woman”

(g) “an 18 year old Buddhist monk, childish looking”

Figure 8.2: Extended results for Fig. 5.1. Front, left, back, and right orthographic views
of meshes synthesized with our method. Each view is rendered in MeshLab [11] with and
without albedo texture to capture the geometric detail of the shape surface. The meshes
are generated by appending the string “, shaved head, wearing a tank top” to the labels in
the captions.

65

8 Appendix

D
re

am
Fu

si
on

M
ag

ic
3D

M
VD

re
am

O
ur

s

(a) “A portly Aboriginal Australian, 80 years old, very wise”

D
re

am
Fu

si
on

M
ag

ic
3D

M
VD

re
am

O
ur

s

(b) “a male bodybuilder, muscular, buffed, strong and masculine”

Figure 8.3: Extended results for Fig. 5.2. We benchmark our method (fourth row) against
DreamFusion [56] (first row), Magic3D [41] (second row), and MVDream [67] (third row).
As seen in the first column, ours is the only approach capable of synthesizing meshes with
clean topology. The remaining eight columns show front, left, back, and right orthographic
views rendered in MeshLab [11] with and without albedo texture. Our method is the only
that produces smooth surfaces and realistic body anatomy. All meshes are generated by
appending the string “, shaved head, wearing a tank top” to the labels in the captions.

66

8.3 Extended Results

(a) “Serena Williams”

(b) “Jackie Chan”

(c) “A man with a long face, high forehead”

(d) “A highly asymmetrical face”

(e) “a very old lady, saggy skin, double chin”

(f) “Homer Simpson”

(g) “A baby”

Figure 8.4: Extended results for Fig. 5.4. Front, left, back, and right orthographic views
of meshes synthesized with our method. Each view is rendered in MeshLab [11] with and
without albedo texture to capture the geometric detail of the shape surface. The meshes
are generated by appending the string “, shaved head, wearing a tank top” to the labels in
the captions.

67

Bibliography

[1] T. Alldieck, N. Kolotouros, and C. Sminchisescu. Score Distillation Sampling
with Learned Manifold Corrective. 2024. arXiv: 2401.05293 [cs.CV].

[2] M. Armandpour, H. Zheng, A. Sadeghian, A. Sadeghian, and M. Zhou. “Re-
imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D,
alleviate Janus problem and Beyond”. In: arXiv preprint arXiv:2304.04968
(2023).

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[4] M. Bahri, E. O. Sullivan, S. Gong, F. Liu, X. Liu, M. M. Bronstein, and
S. Zafeiriou. Shape My Face: Registering 3D Face Scans by Surface-to-
Surface Translation. 2021. arXiv: 2012.09235 [cs.CV]. url: https:
//arxiv.org/abs/2012.09235.

[5] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, Q. Zhang, K. Kreis, M. Ait-
tala, T. Aila, S. Laine, B. Catanzaro, T. Karras, and M.-Y. Liu. “eDiff-I: Text-
to-Image Diffusion Models with Ensemble of Expert Denoisers”. In: arXiv
preprint arXiv:2211.01324 (2022).

[6] A. Bansal, E. Borgnia, H.-M. Chu, J. S. Li, H. Kazemi, F. Huang, M. Gold-
blum, J. Geiping, and T. Goldstein. Cold Diffusion: Inverting Arbitrary Image
Transforms Without Noise. 2022. arXiv: 2208.09392 [cs.CV].

[7] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P.
Srinivasan. “Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural
Radiance Fields”. In: ICCV (2021).

[8] V. Blanz and T. Vetter. “A Morphable Model for the Synthesis of 3D Faces”.
In: SIGGRAPH’99 Proceedings of the 26th annual conference on Computer
graphics and interactive techniques (1999). doi: 10 . 1145 / 311535 .
311556.

[9] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S.
Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet:
An Information-Rich 3D Model Repository. 2015. arXiv: 1512 . 03012
[cs.GR]. url: https://arxiv.org/abs/1512.03012.

69

https://arxiv.org/abs/2401.05293
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2012.09235
https://arxiv.org/abs/2012.09235
https://arxiv.org/abs/2012.09235
https://arxiv.org/abs/2208.09392
https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/311535.311556
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012

Bibliography

[10] B. Chen, D. M. Monso, Y. Du, M. Simchowitz, R. Tedrake, and V. Sitz-
mann. Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffu-
sion. 2024. arXiv: 2407.01392 [cs.LG]. url: https://arxiv.org/
abs/2407.01392.

[11] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. “MeshLab: an Open-Source Mesh Processing Tool”. In:
Eurographics Italian Chapter Conference. Ed. by V. Scarano, R. D.
Chiara, and U. Erra. The Eurographics Association, 2008. isbn: 978-3-
905673-68-5. doi: 10 . 2312 / LocalChapterEvents / ItalChap /
ItalianChapConf2008/129-136.

[12] B. O. Community. Blender - a 3D modelling and rendering package. Blender
Foundation. Stichting Blender Foundation, Amsterdam, 2018. url: http:
//www.blender.org.

[13] M. Deitke, R. Liu, M. Wallingford, H. Ngo, O. Michel, A. Kusupati, A. Fan, C.
Laforte, V. Voleti, S. Y. Gadre, E. VanderBilt, A. Kembhavi, C. Vondrick, G.
Gkioxari, K. Ehsani, L. Schmidt, and A. Farhadi. Objaverse-XL: A Universe
of 10M+ 3D Objects. 2023. arXiv: 2307.05663 [cs.CV]. url: https:
//arxiv.org/abs/2307.05663.

[14] B. Egger, W. A. P. Smith, A. Tewari, S. Wuhrer, M. Zollhoefer, T. Beeler, F.
Bernard, T. Bolkart, A. Kortylewski, S. Romdhani, C. Theobalt, V. Blanz, and
T. Vetter. 3D Morphable Face Models – Past, Present and Future. 2020.
arXiv: 1909.01815 [cs.CV]. url: https://arxiv.org/abs/
1909.01815.

[15] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany, Z. Gojcic, and
S. Fidler. “GET3D: A Generative Model of High Quality 3D Textured Shapes
Learned from Images”. In: Advances In Neural Information Processing Sys-
tems. 2022.

[16] R. Gao*, A. Holynski*, P. Henzler, A. Brussee, R. Martin-Brualla, P. P. Srini-
vasan, J. T. Barron, and B. Poole*. “CAT3D: Create Anything in 3D with Multi-
View Diffusion Models”. In: arXiv (2024).

[17] GitHub - jpcy/xatlas: Mesh parameterization / UV unwrapping library —
github.com. https://github.com/jpcy/xatlas. [Accessed 03-
09-2024].

[18] Y.-C. Guo, Y.-T. Liu, R. Shao, C. Laforte, V. Voleti, G. Luo, C.-H. Chen, Z.-X.
Zou, C. Wang, Y.-P. Cao, and S.-H. Zhang. threestudio: A unified framework
for 3D content generation. https://github.com/threestudio-
project/threestudio. 2023.

[19] N. Guttenberg. Diffusion with Offset Noise. 2023. url: https://www.
crosslabs.org/blog/diffusion-with-offset-noise.

70

https://arxiv.org/abs/2407.01392
https://arxiv.org/abs/2407.01392
https://arxiv.org/abs/2407.01392
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://www.blender.org
http://www.blender.org
https://arxiv.org/abs/2307.05663
https://arxiv.org/abs/2307.05663
https://arxiv.org/abs/2307.05663
https://arxiv.org/abs/1909.01815
https://arxiv.org/abs/1909.01815
https://arxiv.org/abs/1909.01815
https://github.com/jpcy/xatlas
https://github.com/threestudio-project/threestudio
https://github.com/threestudio-project/threestudio
https://www.crosslabs.org/blog/diffusion-with-offset-noise
https://www.crosslabs.org/blog/diffusion-with-offset-noise

Bibliography

[20] A. Hertz, K. Aberman, and D. Cohen-Or. Delta Denoising Score. 2023. arXiv:
2304.07090 [cs.CV]. url: https://arxiv.org/abs/2304.
07090.

[21] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equi-
librium. 2018. arXiv: 1706.08500 [cs.LG].

[22] J. Ho, A. Jain, and P. Abbeel. “Denoising Diffusion Probabilistic
Models”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020, pp. 6840–6851. url: https : / / proceedings .
neurips . cc / paper _ files / paper / 2020 / file /
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

[23] J. Ho and T. Salimans. “Classifier-Free Diffusion Guidance”. In: NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications.
2021.

[24] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video
Diffusion Models. 2022. arXiv: 2204.03458 [cs.CV]. url: https://
arxiv.org/abs/2204.03458.

[25] F. Hong, M. Zhang, L. Pan, Z. Cai, L. Yang, and Z. Liu. “AvatarCLIP: Zero-
Shot Text-Driven Generation and Animation of 3D Avatars”. In: ACM Trans-
actions on Graphics (TOG) 41(4) (2022), pp. 1–19.

[26] Y. Hong, K. Zhang, J. Gu, S. Bi, Y. Zhou, D. Liu, F. Liu, K. Sunkavalli, T.
Bui, and H. Tan. LRM: Large Reconstruction Model for Single Image to 3D.
2024. arXiv: 2311.04400 [cs.CV]. url: https://arxiv.org/abs/
2311.04400.

[27] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W.
Chen. LoRA: Low-Rank Adaptation of Large Language Models. 2021. arXiv:
2106.09685 [cs.CL]. url: https://arxiv.org/abs/2106.
09685.

[28] Y. Huang, J. Wang, Y. Shi, X. Qi, Z.-J. Zha, and L. Zhang. “DreamTime: An
Improved Optimization Strategy for Text-to-3D Content Creation”. In: (2023).
arXiv: 2306.12422 [cs.CV].

[29] Y. Huang, J. Wang, A. Zeng, H. Cao, X. Qi, Y. Shi, Z.-J. Zha, and L. Zhang.
“DreamWaltz: Make a Scene with Complex 3D Animatable Avatars”. In:
(2023). arXiv: 2305.12529 [cs.CV].

[30] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B. Poole. Zero-Shot Text-
Guided Object Generation with Dream Fields. 2022. arXiv: 2112.01455
[cs.CV]. url: https://arxiv.org/abs/2112.01455.

71

https://arxiv.org/abs/2304.07090
https://arxiv.org/abs/2304.07090
https://arxiv.org/abs/2304.07090
https://arxiv.org/abs/1706.08500
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2311.04400
https://arxiv.org/abs/2311.04400
https://arxiv.org/abs/2311.04400
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2306.12422
https://arxiv.org/abs/2305.12529
https://arxiv.org/abs/2112.01455
https://arxiv.org/abs/2112.01455
https://arxiv.org/abs/2112.01455

Bibliography

[31] L. Kavan. “Part I: Direct Skinning Methods and Deformation Primitives”. In:
2014. url: https://api.semanticscholar.org/CorpusID:
7004409.

[32] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. “3D Gaussian Splat-
ting for Real-Time Radiance Field Rendering”. In: ACM Transactions on
Graphics 42(4) (July 2023). url: https://repo-sam.inria.fr/
fungraph/3d-gaussian-splatting/.

[33] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. 2013. arXiv:
1312.6114 [stat.ML]. url: https://arxiv.org/abs/1312.
6114.

[34] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017.
arXiv: 1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.
6980.

[35] D. P. Kingma and M. Welling. “An Introduction to Variational Autoencoders”.
In: Foundations and Trends® in Machine Learning 12(4) (2019), pp. 307–
392. doi: 10.1561/2200000056. url: https://doi.org/10.
1561%2F2200000056.

[36] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres. Quantifying the Carbon
Emissions of Machine Learning. 2019. arXiv: 1910.09700 [cs.CY]. url:
https://arxiv.org/abs/1910.09700.

[37] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and T. Aila. “Modular
Primitives for High-Performance Differentiable Rendering”. In: ACM Trans-
actions on Graphics 39(6) (2020).

[38] J. Lambert. Photometria sive de mensura et gradibus luminis, colorum et
umbrae. sumptibus vidvae E. Klett, typis C.P. Detleffsen, 1760. url: https:
//books.google.es/books?id=JdkTAAAAQAAJ.

[39] R. Li, K. Bladin, Y. Zhao, C. Chinara, O. Ingraham, P. Xiang, X. Ren, P.
Prasad, B. Kishore, J. Xing, and H. Li. Learning Formation of Physically-
Based Face Attributes. 2020. arXiv: 2004.03458 [cs.CV].

[40] X. Li, Q. Zhang, D. Kang, W. Cheng, Y. Gao, J. Zhang, Z. Liang, J. Liao,
Y.-P. Cao, and Y. Shan. Advances in 3D Generation: A Survey. 2024. arXiv:
2401.17807 [cs.CV]. url: https://arxiv.org/abs/2401.
17807.

[41] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S.
Fidler, M.-Y. Liu, and T.-Y. Lin. Magic3D: High-Resolution Text-to-3D Content
Creation. 2023. arXiv: 2211.10440 [cs.CV]. url: https://arxiv.
org/abs/2211.10440.

[42] S. Lin, B. Liu, J. Li, and X. Yang. Common Diffusion Noise Schedules and
Sample Steps are Flawed. 2023. arXiv: 2305.08891 [cs.CV].

72

https://api.semanticscholar.org/CorpusID:7004409
https://api.semanticscholar.org/CorpusID:7004409
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1561/2200000056
https://doi.org/10.1561%2F2200000056
https://doi.org/10.1561%2F2200000056
https://arxiv.org/abs/1910.09700
https://arxiv.org/abs/1910.09700
https://books.google.es/books?id=JdkTAAAAQAAJ
https://books.google.es/books?id=JdkTAAAAQAAJ
https://arxiv.org/abs/2004.03458
https://arxiv.org/abs/2401.17807
https://arxiv.org/abs/2401.17807
https://arxiv.org/abs/2401.17807
https://arxiv.org/abs/2211.10440
https://arxiv.org/abs/2211.10440
https://arxiv.org/abs/2211.10440
https://arxiv.org/abs/2305.08891

Bibliography

[43] R. Liu, R. Wu, B. V. Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick.
Zero-1-to-3: Zero-shot One Image to 3D Object. 2023. arXiv: 2303.11328
[cs.CV].

[44] Y. Liu, C. Lin, Z. Zeng, X. Long, L. Liu, T. Komura, and W. Wang. “Sync-
Dreamer: Generating Multiview-consistent Images from a Single-view Im-
age”. In: The Twelfth International Conference on Learning Representations.
2024. url: https://openreview.net/forum?id=MN3yH2ovHb.

[45] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. “SMPL:
A Skinned Multi-Person Linear Model”. In: ACM Trans. Graphics (Proc. SIG-
GRAPH Asia) 34(6) (Oct. 2015), 248:1–248:16.

[46] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution 3D sur-
face construction algorithm”. In: Proceedings of the 14th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’87. New
York, NY, USA: Association for Computing Machinery, 1987, pp. 163–169.
isbn: 0897912276. doi: 10.1145/37401.37422. url: https://doi.
org/10.1145/37401.37422.

[47] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. 2019.
arXiv: 1711.05101 [cs.LG]. url: https://arxiv.org/abs/
1711.05101.

[48] A. Lukoianov, H. S. de Ocáriz Borde, K. Greenewald, V. C. Guizilini,
T. Bagautdinov, V. Sitzmann, and J. Solomon. Score Distillation via
Reparametrized DDIM. 2024. arXiv: 2405.15891 [cs.CV]. url: https:
//arxiv.org/abs/2405.15891.

[49] M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to Attention-
based Neural Machine Translation. 2015. arXiv: 1508.04025 [cs.CL].

[50] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Syn-
thesis. 2020. arXiv: 2003.08934 [cs.CV]. url: https://arxiv.
org/abs/2003.08934.

[51] T. Müller. tiny-cuda-nn. Version 1.7. Apr. 2021. url: https://github.
com/NVlabs/tiny-cuda-nn.

[52] T. Müller, A. Evans, C. Schied, and A. Keller. “Instant Neural Graphics Prim-
itives with a Multiresolution Hash Encoding”. In: ACM Trans. Graph. 41(4)
(July 2022), 102:1–102:15. doi: 10.1145/3528223.3530127. url:
https://doi.org/10.1145/3528223.3530127.

73

https://arxiv.org/abs/2303.11328
https://arxiv.org/abs/2303.11328
https://openreview.net/forum?id=MN3yH2ovHb
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2405.15891
https://arxiv.org/abs/2405.15891
https://arxiv.org/abs/2405.15891
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

Bibliography

[53] A. Q. Nichol and P. Dhariwal. “Improved Denoising Diffusion Probabilistic
Models”. In: Proceedings of the 38th International Conference on Machine
Learning. Vol. 139. Proceedings of Machine Learning Research. PMLR, July
2021, pp. 8162–8171. url: https://proceedings.mlr.press/
v139/nichol21a.html.

[54] D. H. Park, S. Azadi, X. Liu, T. Darrell, and A. Rohrbach. “Benchmark for
Compositional Text-to-Image Synthesis”. In: Proceedings of the Neural In-
formation Processing Systems Track on Datasets and Benchmarks. Ed. by
J. Vanschoren and S. Yeung. Vol. 1. 2021.

[55] A. Pelykh, O. M. Sincan, and R. Bowden. Giving a Hand to Diffusion Models:
a Two-Stage Approach to Improving Conditional Human Image Generation.
2024. arXiv: 2403.10731 [cs.CV]. url: https://arxiv.org/abs/
2403.10731.

[56] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. “DreamFusion: Text-to-3D
using 2D Diffusion”. In: arXiv (2022).

[57] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sas-
try, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learn-
ing Transferable Visual Models From Natural Language Supervision. 2021.
arXiv: 2103.00020 [cs.CV].

[58] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. 2021. arXiv:
2112.10752 [cs.CV].

[59] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation”. In: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Ed. by N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi. Cham: Springer International Publishing,
2015, pp. 234–241.

[60] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S.
Ghasemipour, B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho,
D. J. Fleet, and M. Norouzi. Photorealistic Text-to-Image Diffusion Models
with Deep Language Understanding. 2022. arXiv: 2205.11487 [cs.CV].
url: https://arxiv.org/abs/2205.11487.

[61] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X.
Chen. Improved Techniques for Training GANs. 2016. arXiv: 1606.03498
[cs.LG]. url: https://arxiv.org/abs/1606.03498.

[62] T. Salimans and J. Ho. “Progressive Distillation for Fast Sampling of Diffusion
Models”. In: International Conference on Learning Representations. 2022.

74

https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://arxiv.org/abs/2403.10731
https://arxiv.org/abs/2403.10731
https://arxiv.org/abs/2403.10731
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/1606.03498

Bibliography

[63] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti,
T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski, S. Kun-
durthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev. LAION-5B:
An open large-scale dataset for training next generation image-text models.
2022. arXiv: 2210.08402 [cs.CV]. url: https://arxiv.org/abs/
2210.08402.

[64] SG161222. Realistic Vision V6.0 B1 noVAE. Accessed: 2024-08-27. Aug.
2024. url: https://huggingface.co/SG161222/Realistic_
Vision_V6.0_B1_noVAE.

[65] T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler. Deep Marching Tetrahedra: a
Hybrid Representation for High-Resolution 3D Shape Synthesis. 2021. arXiv:
2111.04276 [cs.CV]. url: https://arxiv.org/abs/2111.
04276.

[66] T. Shen, J. Munkberg, J. Hasselgren, K. Yin, Z. Wang, W. Chen, Z. Gojcic,
S. Fidler, N. Sharp, and J. Gao. “Flexible Isosurface Extraction for Gradient-
Based Mesh Optimization”. In: ACM Trans. Graph. 42(4) (July 2023). issn:
0730-0301. doi: 10.1145/3592430. url: https://doi.org/10.
1145/3592430.

[67] Y. Shi, P. Wang, J. Ye, L. Mai, K. Li, and X. Yang. “MVDream: Multi-view
Diffusion for 3D Generation”. In: The Twelfth International Conference on
Learning Representations. 2024. url: https://openreview.net/
forum?id=FUgrjq2pbB.

[68] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep
Unsupervised Learning using Nonequilibrium Thermodynamics”. In: Pro-
ceedings of the 32nd International Conference on Machine Learning. Vol. 37.
Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015,
pp. 2256–2265.

[69] J. Song, C. Meng, and S. Ermon. “Denoising Diffusion Implicit Models”. In:
International Conference on Learning Representations. 2021.

[70] Y. Song and S. Ermon. Generative Modeling by Estimating Gradients of the
Data Distribution. 2020. arXiv: 1907.05600 [cs.LG].

[71] J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng. “DreamGaussian: Genera-
tive Gaussian Splatting for Efficient 3D Content Creation”. In: arXiv preprint
arXiv:2309.16653 (2023).

[72] J. Tang, H. Zhou, X. Chen, T. Hu, E. Ding, J. Wang, and G. Zeng. “Delicate
Textured Mesh Recovery from NeRF via Adaptive Surface Refinement”. In:
arXiv preprint arXiv:2303.02091 (2022).

75

https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://huggingface.co/SG161222/Realistic_Vision_V6.0_B1_noVAE
https://huggingface.co/SG161222/Realistic_Vision_V6.0_B1_noVAE
https://arxiv.org/abs/2111.04276
https://arxiv.org/abs/2111.04276
https://arxiv.org/abs/2111.04276
https://doi.org/10.1145/3592430
https://doi.org/10.1145/3592430
https://doi.org/10.1145/3592430
https://openreview.net/forum?id=FUgrjq2pbB
https://openreview.net/forum?id=FUgrjq2pbB
https://arxiv.org/abs/1907.05600

Bibliography

[73] D. Tochilkin, D. Pankratz, Z. Liu, Z. Huang, A. Letts, Y. Li, D. Liang, C. Laforte,
V. Jampani, and Y.-P. Cao. TripoSR: Fast 3D Object Reconstruction from
a Single Image. 2024. arXiv: 2403.02151 [cs.CV]. url: https://
arxiv.org/abs/2403.02151.

[74] M. Turk and A. Pentland. “Face recognition using eigenfaces”. In: Proceed-
ings. 1991 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 1991, pp. 586–591. doi: 10.1109/CVPR.1991.
139758.

[75] Z. Wang, C. Lu, Y. Wang, F. Bao, C. Li, H. Su, and J. Zhu. ProlificDreamer:
High-Fidelity and Diverse Text-to-3D Generation with Variational Score Dis-
tillation. 2023. arXiv: 2305.16213 [cs.LG]. url: https://arxiv.
org/abs/2305.16213.

[76] Wikipedia. Volume of an n-ball — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Volume%20of%
20an%20n-ball&oldid=1216556293. [Online; accessed 20-August-
2024]. 2024.

[77] L. Zhang, Z. Wang, Q. Zhang, Q. Qiu, A. Pang, H. Jiang, W. Yang, L. Xu, and
J. Yu. CLAY: A Controllable Large-scale Generative Model for Creating High-
quality 3D Assets. 2024. arXiv: 2406.13897 [cs.CV]. url: https:
//arxiv.org/abs/2406.13897.

[78] L. Zhang, A. Rao, and M. Agrawala. Adding Conditional Control to Text-to-
Image Diffusion Models. 2023.

[79] S. Zuffi, A. Kanazawa, D. Jacobs, and M. J. Black. “3D Menagerie: Modeling
the 3D Shape and Pose of Animals”. In: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). July 2017.

76

https://arxiv.org/abs/2403.02151
https://arxiv.org/abs/2403.02151
https://arxiv.org/abs/2403.02151
https://doi.org/10.1109/CVPR.1991.139758
https://doi.org/10.1109/CVPR.1991.139758
https://arxiv.org/abs/2305.16213
https://arxiv.org/abs/2305.16213
https://arxiv.org/abs/2305.16213
http://en.wikipedia.org/w/index.php?title=Volume%20of%20an%20n-ball&oldid=1216556293
http://en.wikipedia.org/w/index.php?title=Volume%20of%20an%20n-ball&oldid=1216556293
http://en.wikipedia.org/w/index.php?title=Volume%20of%20an%20n-ball&oldid=1216556293
https://arxiv.org/abs/2406.13897
https://arxiv.org/abs/2406.13897
https://arxiv.org/abs/2406.13897

	Abstract
	Introduction
	Related Work
	Preliminaries
	3D Meshes
	Shape and Structure
	Surface Properties
	Deformation Primitives

	Diffusion Models
	Classifier-free Guidance

	Score Distillation Sampling
	Defining Qualitative Operability Criteria for 3D Meshes
	Coherence and consistency.

	Method
	Overview
	Geometric Prior
	3D Morphable Model
	Axis-Aligned Bounding Box Clipping
	Dataset

	Differentiable Renderer
	Diffusion Prior
	Classifer-Free Guidance in Score Distillation Sampling
	Multi-view Consistency

	Experiments
	Experimental Setup and Implementation Details
	Multi-view Contrastive Language-Image Pre-Training Similarity Score
	Text-to-3D Asset Generation
	Output Editing
	Interchangeability of the Geometric Prior
	Interchangeability of the Diffusion Prior
	Ablation Study

	Discussion
	Implications
	Limitations and Future Work
	Ethics

	Conclusion
	Appendix
	Analysis of the Shape Space Constrained by the Axis-Aligned Bounding Box
	Derivation of the Score Distillation Sampling Decomposition
	Extended Results

