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Abstract

In their paper “Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise”, which
is currently under review for submission at the Eleventh International Conference on Learning
Representations (ICLR 2023), Bansal et al. demonstrate that Gaussian noise is not necessary
for generative diffusion models to work. Instead of sequentially adding Gaussian noise to a clean
image and then reversing the noising process, as it is done in standard diffusion models, the authors
explore image generation using deterministic degradations. These deterministic degradations can
be inverted with the help of a new sampling algorithm that is proposed. While the quality of the
produced samples is not comparable to that of the state-of-the-art, the paper serves as a proof of
concept that diffusion models can reverse arbitrary image transforms. In this report, we review
the studied methods and their implications.

1 Introduction

In this work, we reproduce and analyze the methods for cold diffusion proposed by Bansal et al.
in their paper “Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise” [BBC+22a].
Additionally, we comment on both the strengths and weaknesses of the paper, as well as the reception
and criticism the paper has received by the community [Ano22].
Standard diffusion models consist of an image degradation process, which usually involves gradually
adding small amounts of Gaussian noise, and a reversal process, where a trained neural network tries to
decontaminate the image and output a clean, noiseless image. Under the right circumstances, diffusion
models can generate new images from pure noise. These generative models have been inspired by
Langevin Dynamics, which model the transition between states of heavy noise (at a high temperature)
and little or no noise (at a low temperature). Thus, the models explored in [BBC+22a] are called “Cold
Diffusion” models, as they rely on the absence of noise, both during training and sampling. Cold
diffusion allows for generalized diffusion models that can revert arbitrary degradations. Currently,
there is no solid theoretical framework to understand cold diffusion. The authors do not provide much
theoretical support for their findings either, but they perform an extensive qualitative and quantitative
analysis of their results.

2 Generalized Diffusion

2.1 General Pipeline

The general pipeline to achieve a complex generative behavior with diffusion models consists of three
main steps:
First, we apply the degradation operator D to the clean image x0 ∈ RN , sampled from a distribution
X , with severity t. Thus, the operation xt = D(x0, t) gradually removes information from x0 with
increasing t. By definition, D(x0, 0) = x0. In standard diffusion models, the degradation operator
contaminates the image with noise with a variance schedule that is dependant on t. For cold diffusion,
we consider mostly deterministic degradations.
Second, we train the restoration neural network Rθ – or short, R – parameterized with θ, to behave
as the inverse of D. It should therefore approximate the operation Rθ(xt, t) ≈ x0. The network is
trained by minimizing

min
θ

Ex∼X ∥Rθ(D(x, t), t)− x∥1
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with the random image x that belongs to the distribution X and the ℓ1 norm ∥·∥1.
Third, we use a sampling algorithm to invert the (deterministic) diffusion process and reconstruct
the image x̂0. Standard diffusion approaches, such as DDIM/DDPM [SME21], use a naive sam-
pling algorithm (Algorithm 1 in [BBC+22a]). However, a different sampling algorithm (Algorithm 2
in [BBC+22a]) is used in cold diffusion1. The two sampling algorithms and their differences are ex-
plored in the following subsection.
All in all, the key differences between cold diffusion and standard diffusion models are the determin-
istic (vs. random) degradation and the sampling algorithm utilized for generation. On the one hand,
cold diffusion can be applied to conditional generation (or inverse) tasks, where there is some infor-
mation available from the original image after the degradation process. Thus, the aim is to reverse
the degradation and reconstruct the original image. On the other hand, one can also perform uncon-
ditional generation, where there is no information available from the original data distribution after
the degradation.

2.2 Sampling Algorithms

Figure 1: Qualitative comparison of the sampling quality of Algoithm 1 (top row) and Algorithm 2
(bottom row) applied to cold diffusion on the CelebA dataset.

When the degradation operator D is smooth or differentiable, Algorithm 1 fails to produce mean-
ingful results, as can be seen Figure 1. Thus, Bansal et al. propose a new sampling methodology,
Algorithm 2, which produces higher quality images when sampling from cold degradations. Both
algorithms can be found here in Appendix B. In essence, Algorithm 1 – which is the equivalent to
sampling method in DDIM/DDPM [SME21] – alternates between applying the restoration operator
and the degradation operator, with slightly less severity (i.e., one time step less) until the image is
fully reconstructed. Thus, the degradation applied at each step s of the reverse process reads as

xs−1 = D(x̂0, s− 1).

In contrast, Algorithm 2 introduces a new way of applying the degradation at each step s of the reverse
process, given by

xs−1 = xs −D(x̂0, s) +D(x̂0, s− 1).

One can easily see that both update rules are perfect (i.e., xs = D(x0, s) for s < t) if the restoration
operator R is the exact inverse of D. In the case of Algorithm 2, the term xs −D(x̂0, s) cancels out if
x̂0 = R(xs, s) = x0.
Bansal et al. do not provide a clear theoretical reasoning to explain the fact that Algorithm 1 fails
to produce qualitatively good samples for cold diffusions with smooth degradations. However, they
demonstrate the local stability of Algorithm 2 with respect to errors in the restoration operator R
when using linear degradations, which is an attribute that Algorithm 1 does not have (or, at least, has
not been proven to have). Nevertheless, it must be insisted that this stability is local (around x = x0

and s = 0) and only true for linear degradations of the form D ≈ x + s · e, as the authors tend to
generalize the statement that Algorithm 2 is immune to errors in R and each iteration behaves as if R
was a perfect inverse of D. In the mathematical proof, which is an inductive proof, Bansal et al. argue
that it is valid to assume a linear degradation function, because the Taylor expansion of a smooth

1In other versions of the paper, Algorithm 2 is also called TACoS, which is an acronym that stands for “Transformation
Agnostic Cold Sampling”. For more information on the versions of the paper, please see Appendix A.
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degradation function D(x, s) is D(x, s) ≈ x+ s · e+HOT (considering that D(x, 0) = 0 by definition),
where HOT are higher order terms. The authors, however, ignore the fact that e is not necessarily
constant and in the general case is dependent on x, ergo e(x) should be regarded. A constant e can
be assumed for some truly linear degradations, such as the “animorphism” presented later, but could
not be true for other degradation functions, like the blurring operation that is also reviewed later.

3 Generalized Diffusions with Various Transformations

Figure 2: Conditional sampling models, trained on the CelebA dataset and each with a different de-
terministic degradation. The degradations correspond to the deblurring, inpainting, super-resolution,
and snowification tasks. Left column to right column: degraded image D(x0, T ), direct restoration
R(D(x0, T ), T ), sample produced with Algorithm 2, and original image x0.

The authors study the effects of different deterministic degradations on diffusion processes for uncon-
ditional generation. They present four degradation functions and provide empirical results for each
of the degradations. For the sake of conciseness, we only show one result per degradation, which is
qualitatively representative for the CelebA dataset. Furthermore, we only comment on the quantita-
tive analysis derived from the provided metrics. Screenshots of the extended material, including more
sampled images and tables with the Fréchet Inception Distance (FID) scores can be found here in
Appendix C. A different restoration network has to be trained separately for each degradation and
each dataset, where the chosen hyperparameters may vary. Further implementation details can be
found in the official GitHub repository [BBC+22b].

3.1 Deblurring

The clean image x0 is contaminated with a Gaussian blur degradation that grows with each time step
t. Hence, the image is convoluted with the Gaussian kernels {Gs} of size 11 × 11. The standard
deviation either remains constant (in the case of MNIST), grows at a rate proportional to t (in the
case of CIFAR-10), or exponentially (in the case of CelebA). Then, the degradation operator D(x0, t)
can be defined as

xt = Gt ∗ xt−1 = Gt ∗ · · · ∗G1 ∗ x0 = Gt ∗ x0 = D(x0, t),

where ∗ is the convolution operator. Interestingly, from an image processing point of view, these
operations correspond to removing high frequencies from the original image in each time step. During
sampling, Algorithm 2 sequentially adds a difference of Gaussians to the degraded image, which is
equivalent to adding back the frequencies that have been removed. In Figure 2, we see that the
sampling method presented in Algorithm 2 produces sharper samples than the direct reconstruction
of the image through a single application of the restoration operator R. However, the image is still
not photo-realistic, the produced face lacks detail, and features are too smooth. The FID scores of the
sampled images are slightly better compared to the direct reconstruction, but the SSIM and RMSE
scores are marginally worse.

3.2 Inpainting

The image is now degraded via the sequential multiplication with the Gaussian masks {zβi}, where βi

denotes the schedule of the variance with β1 = 1 and βi+1 = βi+0.1. The degradation D(x0, t), which
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effectively grays out pixels in an area of Gaussian shape, can be written as

xt = x0 ·
t∏

i=1

zβi = D(x0, t)

with the operator · denoting the element-wise multiplication. Both the qualitative and the quantitative
analysis of the results are very similar to those of the deblurring case in the previous subsection.
Additionally, we see in Figure 2 that Algorithm 2 fails to fully remove the gray stain from the image,
while the direct method manages to do so. This fact is not mentioned by the authors.

3.3 Super-Resolution

In the forward process, we downsample (by halving the resolution at each step) the input image to a
resolution of 4 × 4 in the case of MNIST and CIFAR-10, and 2 × 2 for CelebA. Then, we upscale to
the original image size with nearest-neighbor interpolation. As seen in Figure 2, the sample quality
of Algorithm 2 is qualitatively superior to the direct reconstruction, but still far from photo-realistic.
The quantitative analysis shows a poor distributional similarity to the original datasets, especially for
CIFAR-10 and CelebA. Algorithm 2 tends to yield a better FID score, but is still outperformed in the
other metrics (SSIM and RMSE).

3.4 Snowification

Finally, Bansal et al. explore the degradation of the data point by applying the ImageNet-C “snowifi-
cation” transform [HD19] that adds a synthetic snow effect on top of the image. When reversing the
degradation operation, the direct method clearly produces better quality samples than Algorithm 2,
as illustrated in Figure 2. We see that the image generated with Algorithm 2 has still some of the syn-
thetic snow contaminating the image. Furthermore, some areas of the image are colored erroneously.
The authors seem to ignore this finding in their analysis and do not provide metrics to compare the
direct reconstruction with Algorithm 2, as they do for the other degradations studied before.

4 Cold Generation

Here, Bansal et al. examine unconditional generation for cold diffusion. The idea is that the cold
diffusion models produce new data samples that belong to the original image distribution, starting the
reverse process from a degradaded image xT that is completely devoid of information. As we see in
the later discussion, the authors put their focus not only on optimizing the quality of the samples, but
more importantly, on establishing ways to promote diversity during generation.

4.1 Generation using deterministic noise degradation

Hot Diffusion Cold Diffusion
Dataset Fixed noise Estimated noise Perfect symmetry Broken symmetry

CelebA 59.91 23.11 97.00 49.45
AFHQ 25.62 20.59 93.05 54.68

Table 1: FID scores using hot (noise) and cold diffusion (with blur) for the CelebA and AFHQ datasets.

The degradation operator D(x, t) =
√
αtx +

√
1− αtz is defined as an interpolation between the

image x and a noise pattern z ∼ N (0, 1), sampled from a normal distribution. As the degradation D is
only applied once during training, the noise pattern is only sampled once. However, in the generation
process with Algorithm 2, the degradation D is applied sequentially. Sampling a new noise pattern z in
each application of D during image generation would make the generation process non-deterministic.
Therefore, there are two options for deterministic generation using a deterministic noise degradation.
The quantitative results of the two presented approaches are available in Table 1.
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Fixed noise: the first option is to sample the noise vector z once during each individual image gen-
eration process and reuse the same z in each application of D.
Estimated noise: the second option, which is equivalent to the deterministic sampling in DDIM2 [SME21],
is to estimate the noise pattern in step t of the reverse process as

ẑ(xt, t) =
xt −

√
αtR(xt, t)√
1− αt

.

4.2 Image generation using blur

In standard diffusion models, the distribution of the final degraded image xT at step T is an isotropic
Gaussian. In contrast, the image at the end of a blurring process, as described in Section 3.1, with
large T is a constant image xT that can be represented with a 3-dimensional vector holding the RGB
value, which is the channel-wise mean of the input image x0. The distribution of the degraded image
can then be modeled with a single-channel Gaussian Mixture Model (GMM).
Perfect symmetry: if we sample a new RGB value of a fully blurred image from the GMM and use
it to create a monochromatic image xT of the original image size, there is a perfect correlation between
the pixels of xT . Hence, there is very low diversity during the deterministic image generation process.
Broken symmetry: to increase the variability of the produced samples, the perfect symmetry in xT

can be broken by adding very low-variance Gaussian noise to the image.
As seen in Table 1, the estimated noise approach is quantitatively superior to the fixed noise method
for deterministic noise degradation. While still having a worse performance than diffusion with deter-
ministic noise degradation, breaking the symmetry improves both the quality and the variability of
the generated samples for cold diffusion with blur degradation.

4.3 Generation using other transformations

Lastly, the authors study generalized diffusion with arbitrary transformations from one data distribu-
tion to a different one in the forward process. The goal is to have predictable final distributions of the
degraded image, which allow for variability in the generation process.
Random masking: to use the masking degradation from Section 3.2 with large T , until there is no
information left in the final image xT , we sample a random color for the mask. This way, xT is an
image c of a randomly sampled color. Conversely, always using the same color, e.g., black, would not
allow for diversity in generation. We therefore redefine the degradation to

xt = Gt · x0 + (1−Gt) · c = D(x0, t)

with the Gaussian mask Gt =
∏t

i=1 zβi
.

Super-resolution: similarly as already described for the blurring case, we can fit a GMM to the
images xT , degraded as in Section 3.3, and sample a new data point to initialize the generation process.
Animorphosis: as a proof of concept, the authors interpolate images from the CelebA dataset with
images from the AFHQ dataset, from which a new image is generated sampling with Algorithm 2.
The interpolation can also be applied to arbitrary initial data manifolds. Conceptually, the described
transformation is equivalent to the deterministic noise degradation in Section 4.1.

5 Conclusion

Overall, the paper serves as an empirical proof that Gaussian noise is not necessary for diffusion models
to show complex generative behavior. Despite the arguments of the authors, it is still unclear that
Algorithm 2 is superior to Algorithm 1. The quality of the sampled images is worse than the samples
generated with standard diffusion models. A potential future line of research could be in the area
of conditional generation, where one could guide the generation process via the configuration of the
degraded image. Also, the paper opens the door to the study of general diffusion models as a whole.

2In DDIM, the noise estimate ẑ is used to predict the image x̂0. Here, x̂0 is found first and used then to estimate the
noise ẑ.
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A Disclaimer About the Paper

Bansal et al. have submitted their paper “Cold Diffusion: Inverting Arbitrary Image Transforms
Without Noise” [BBC+22a] for blind review, to be published at ICLR 2023 [Ano22]. Even though
the identity of the authors should be anonymous, versions of the work are available with the revealed
names of the authors. In this report, we always refer to the version referenced in the bibliography
(i.e., [BBC+22a]) and not to other versions that are also available. Although the notation used by
Bansal et al. is inconsistent, we carry on with the same notation in order to allow the identification of
the formulas referenced in this report.

B Pseudocode of Sampling Algorithms

The two sampling algorithms presented in [BBC+22a] can be found here.

Algorithm 1 Naive Sampling

Input: A degraded sample xt

for s = t, t− 1, . . . , 1 do
x̂0 ← R(xs, s)
xs−1 = D(x̂0, s− 1)

end for
Return: x0

Algorithm 2 Improved Sampling for Cold Diffusion (or Transformation Agnostic Cold Sampling)

Input: A degraded sample xt

for s = t, t− 1, . . . , 1 do
x̂0 ← R(xs, s)
xs−1 = xs −D(x̂0, s) +D(x̂0, s− 1) ▷ New update rule

end for
Return: x0

C Extended Results

Here, we can find screenshots of the extended qualitative and quantitative analysis provided in [BBC+22a]
for the described generative models with deterministic degradation functions.

(a) Deblurring models trained on MNIST, CIFAR-10, and CelebA datasets. Left to right: degraded inputs
D(x0, T ), direct reconstruction R(D(x0, T ), T ), sampled reconstruction with Algorithm 2, and original image.

(b) Screenshot of the table with quantitative results for the sample quality using deblurring models.

Figure 3: Screenshots of the empirical results for deblurring.
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(a) Inpainting models trained on MNIST, CIFAR-10, and CelebA datasets. Left to right: degraded inputs
D(x0, T ), direct reconstruction R(D(x0, T ), T ), sampled reconstruction with Algorithm 2, and original image.

(b) Screenshot of the table with quantitative results for the sample quality using inpainting models.

Figure 4: Screenshots of the empirical results for inpainting.

(a) Superresolution models trained on MNIST, CIFAR-10, and CelebA datasets. Left to right: degraded
inputs D(x0, T ), direct reconstruction R(D(x0, T ), T ), sampled reconstruction with Algorithm 2, and original
image.

(b) Screenshot of the table with quantitative results for the sample quality using superresolution models.

Figure 5: Screenshots of the empirical results for superresolution.

(a) Desnowification models trained on MNIST, CIFAR-10, and CelebA datasets. Left to right: degraded
inputs D(x0, T ), direct reconstruction R(D(x0, T ), T ), sampled reconstruction with Algorithm 2, and original
image.

(b) Screenshot of the table with quantitative results for the sample quality using desnowification models.

Figure 6: Screenshots of the empirical results for desnowification.
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Figure 7: Examples of generated samples from 128 × 128 CelebA and AFHQ datasets using cold
diffusion with blur tranformation.
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