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Start: XX.XX.2021
Intermediate Report: XX.XX.2021
Delivery: XX.XX.2021

(M. Leibold)
Akad. Rat





Abstract

Stochastic Model Predictive Control is a trajectory planning strategy for autonomous
vehicles that is able to handle probabilistic uncertainties with chance constraints. The
planning algorithm optimizes the path of an autonomous vehicle based on forecasts
about the future development of the surrounding environment. Nevertheless, the
optimal control problem has a high computational cost, which can be reduced
through the introduction of grid-based environment representations that build on
Occupancy Grids. For the predictions, assumptions about other tra�c participants
are founded on hand-engineered heuristics and probabilistic models. However, due
to the multimodal nature of driving scenarios and the probabilistic dependencies
of tra�c events, conventional prediction models are generally not able to scale and
generalize to complex and diverse scenarios. Conversely, Recurrent Neural Networks
have the capability to learn to model probability estimation based on training data,
such as sequences of Occupancy Grids. Thus, we develop two di↵erent deep learning
long-term prediction models and present a procedure to integrate the data-driven
forecasts into the current planning method. Lastly, the approach is demonstrated in
a simulation framework in an autonomous driving scenario.
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Chapter 1

Introduction

In recent years, research on autonomous driving has intensified, with increasing
support from both academia and industry. Some of the most important tasks of
an autonomous agent encompass environment estimation, as well as long-term and
e�cient trajectory planning in uncertain tra�c scenarios. Popular approaches to
address these challenges include the Occupancy Grid (OG), Model Predictive Control
(MPC), and diverse Machine Learning techniques, such as deep Recurrent Neural
Networks (RNNs).

The OG [STW17], together with other grid-map environment representations that
build on top of it, enables a robust and consistent modeling of the surroundings
of an intelligent agent. An OG maps the territory around the controlled entity
into a grid where each cell is assigned an occupancy probability that estimates the
likelihood of the presence of an obstacle. Improved versions of the OG, like the
Dynamic Occupancy Grid (DOG), include dynamic information of all the objects
within the detection range and can be used for dynamic object tracking. The use of
grid environment maps is widespread in robotics and is gaining in popularity in the
automotive sector.

Furthermore, MPC is a control method that has also seen a gradual, hardware-
enabled rise in adoption. MPC repeatedly solves an open-loop optimal control
problem at every sampling instant [GP17, Mes16]. With the help of a dynamic
system model, a cost function with state and input constraints is minimized over a
sequence of control inputs that extends from the current time step to the control
horizon. Even though only the first control action of the sequence is applied, making
predictions about future time steps allows to anticipate events and avoid overshoot.
As the control process advances, updated measurements – acting as a feedback to
the MPC – are considered and the horizon recedes. To better deal with probabilistic
uncertainties, inherent to real-world scenarios, Stochastic Model Predictive Control
(SMPC) introduces chance constraints that allow to account for uncertainties in
the control design. The SMPC method is also an e↵ective approach for trajectory
planning in automated driving and its e�ciency can be further improved with
grid-based SMPC implementations with OGs [BDP+20].



6 CHAPTER 1. INTRODUCTION

Lastly, di↵erent Recurrent Neural Network (RNN) architectures [She20], which are
founded on fully connected Long Short-Term Memories (LSTMs), have proven an
outstanding performance in sequence-to-sequence mapping tasks in fields like natural
language processing [Neu17] or prediction of future video frames [SHD19]. The latter
example is of special interest, as OGs have a similar structure to video frames: an OG
can be interpreted as a grayscale image, where the brightness intensity of each pixel
is directly obtained from the occupancy value at the corresponding cell in the OG.
On top of that, the pixel map contains shapes and patterns that can be recognized
by a learning algorithm. Moreover, a series of OGs produces an animation of the
driving scenario. Thus, RNN-based deep learning approaches can also be applied
to forecast the future development of grid environments by inference from an OG
sequence of previous sampling steps, as in [PKK+18, SHD19, MR19]. In this work, a
similar procedure is integrated into the current grid-based SMPC method to analyze
motion patterns of surrounding obstacles and anticipate their maneuvers for safe
trajectory planning.

Problem Statement

To reduce the computational complexity derived from chance constraints in SMPC,
a grid-based technique has been proposed in [BDP+20]. The same approach is
refined in [Hö20] to integrate the dynamic object tracking algorithm from [STW17].
However, the complex grid environment representations that are used contain and
entail valuable information that is not fully taken advantage of. Besides, predictions
about future states of surrounding tra�c participants are only founded on rather
simple, manually-designed heuristics that are not able to generalize to diverse tra�c
scenarios.
Therefore, the objective of this work is to better exploit available OG and dynamic
object data by adding an online long-term grid prediction to the current grid-based
SMPC method. We develop the data-driven grid prediction with deep learning
techniques, first as a classification LSTM network, and second as a deep regression
LSTM network. Both approaches are able to forecast the future motion of various
dynamic objects within the detection range for multiple steps with a long-term
prediction horizon. In addition, we present a methodology to integrate the prediction
models into the grid-based SMPC trajectory planning algorithm.
Finally, a framework is designed to simulate di↵erent driving scenarios and evaluate
the method with the proposed modification. Unlike the simulations performed
in some of the previous work, which are carried out with prerecorded data, the
simulation framework is designed in such a way that the actions of the controlled
vehicle a↵ect the local environment and elicit reactions from other agents.
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Chapter 2

Preliminaries

This chapter opens with the literature review in Section 2.1, with focus on related
work about OGs, di↵erent SMPC approaches, RNN-based deep learning architectures,
and microscopic tra�c simulation frameworks. Subsequently, Sections 2.2 - 2.4 briefly
present each of the methods and the corresponding notation used in this work.

2.1 Related Work

Due to its extraordinary ability to cope with probabilistic uncertainties in real-world
systems, SMPC has become a subject of study for automotive applications, such as
vehicle path planning. In [Mes16], multiple SMPC approaches are presented and
the need for e�cient uncertainty propagation algorithms is addressed. To propagate
uncertainties to future predictions, some SMPC implementations like [BDP+20, Hö20]
rely on the method introduced in [CGLB14]. Furthermore, a strategy to achieve a
numerically tractable formulation of chance constraints is proposed in [BDP+20]. The
authors take advantage of the OG to find a convex set of admissible space, which can
be expressed as a standard MPC constraint, alleviating the computational complexity
of the online optimal control problem. In [STW17], density-based clustering and
particle filters are used to obtain object tracks of dynamic tra�c participants over
time based on DOGs. The object tracking approach is integrated in [Hö20] into
the grid-based SMPC from [BDP+20]. Albeit the substantial leap in e�ciency from
grid-based SMPC in comparison to standard SMPC for automated driving, the
grid-based SMPC disregards much of the available data derived during the tracking
of dynamic tra�c participants and employs a prediction model that is hardly scalable.
Thus, the method has a great potential for improvement and the waste data can be
e↵ectively used to upgrade the prediction approach.
Data-driven predictions of the future motion of tra�c participants based on grid
environment representations have been studied previously. The state of the art in
the literature for predicting the evolution of road environments from sequences of
OGs addresses the problem with deep learning models, which show a high degree of
e�ciency and better results than traditional approaches. For instance, a di↵erence
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learning RNN model is presented in [MR19] that shows a high degree of accuracy. In
addition, the convolutional network to forecast future OGs in urban driving scenarios
propounded in [HBD17] is outperformed by the authors with an RNN network
in [SHD19], which takes DOGs sequentially as inputs and produces separate static
and dynamic predictions. The probabilistic RNN model to predict future vehicle
positions introduced in [PKK+18] is close to our implementation of the classification
prediction network. In contrast to the previously discussed works, the data used
in the model of [PKK+18] is not in the format of OGs, but as state vectors that
describe the motion of individual vehicles. Although the network is provided with
little contextual information about other tra�c participants for the inference, the
model still demonstrates a high performance.
Finally, a general technique to couple the microscopic tra�c simulator SUMO (Simu-
lation of Urban MObility) [LBBW+18] with another vehicle simulation environment
is described in [KDEA19]. The sub-lane model that comes natively in SUMO, which
allows to simulate lateral vehicle movement precisely, already integrates the func-
tionality from the algorithm proposed in [KDEA19] to imitate smooth lane changes.
Moreover, the procedure to warn external vehicles about maneuvers in advance could
result in overly favorable scene development that does not take into account real-life
driving errors of other tra�c participants.

2.2 Occupancy Grid

0

1

x

y

Figure 2.1: Qualitative example of an OG representing a road scenario with one
detected object. The color coding indicates the estimated occupancy probability.

An OG is a two-dimensional, space-discrete representation of the local environment
that provides a rectangular shaped bird’s-eye view of the setting with length ◆x and

width ◆y. The surrounding of the EV is divided into a grid G 2 R
◆x
ax

⇥ ◆y
ay of cells

ci,j 2 G of length ax and width ay, where the subscripts x and y denote the two
spatial dimensions, and i and j are indices. Additionally, the fractions ◆x

ax
and ◆y

ay
are

required to be integers. The size of the cells, which can be seen as the resolution
of the grid, poses a trade-o↵ between accuracy and computational cost. Each of
the cells is assigned an occupancy value that approximates the posterior probability
of the presence of an object. Di↵erent algorithmic approaches exist to estimate
the occupancy values, typically as Bayesian occupancy estimations of inexact fused
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sensor measurements. In addition, variants of the standard OG may include diverse
channels to code supplementary information, such as dynamic estimates.

2.3 Stochastic Model Predictive Control

In contrast to standard MPC, SMPC [Mes16] accounts for a probabilistic uncertainty
w in the system model. As the dynamic range of the uncertainty is typically
unrestricted, fulfillment of hard state constraints cannot always be guaranteed and
chance constraints are used instead, which only require a certain degree of constraint
satisfaction � 2 [0, 1]. Hence, SMPC allows to dynamically compensate between
achieving the control objectives and satisfying probabilistic constraints. The higher
the probability level �, the more conservative the resulting control behavior. Similarly
to MPC, an open-loop, constrained optimal control problem is to be solved online.
The cost function J is minimized over the control horizon N 2 N with regards to
the input sequence U = {u0, . . . ,uN�1} of control actions uh at prediction step h.
The general SMPC optimal control problem is therefore given by

U ⇤ = argmin
U

J (⇠h,uh) (2.1a)

s.t. ⇠0 = ⇠̂k, (2.1b)

⇠h+1 = f(⇠h,uh,wh), h 2 N, (2.1c)

uh 2 Uh, h = 0, . . . , N � 1, (2.1d)

Pr(⇠h 2 ⌅h) � �, h = 1, . . . , N, (2.1e)

with the state vector ⇠h at prediction step h, the state estimation ⇠̂k at measurement
time stamp k, and the constraint sets Uh and ⌅h. Only the first control input u⇤

0

is applied to the system from the optimal control sequence U ⇤ =
�
u⇤

0, . . . ,u
⇤
N�1

 
,

which is the result of the SMPC optimal control problem. In the following sampling
instant, the state vector ⇠0 is updated.
Overall, SMPC combines capability to deal with complex multiple-input, multiple-
output systems of MPC with a stochastic characterization of uncertainties. However,
propagating uncertainties through the prediction horizon is computationally de-
manding, especially given complex or nonlinear system dynamics. Besides, the
chance constraint (2.1e) is generally non-convex and intractable. Thus, OGs can
be integrated in a grid-based SMPC approach [BDP+20] to derive a deterministic
approximation of the chance constraints, which is further explored in the second half
of this work.

2.4 Long Short-Term Memory

The Recurrent Neural Network (RNN) is an artificial neural network that is able
to learn to process sequential data, such as time series data [She20]. At every time
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step k, the hidden state hk of the standard RNN cell is fed back to its input in the
following time step k + 1. In this way, information is carried on sequentially through
time and the output of the cell is influenced by the previous events. However, the
RNN su↵ers from the vanishing gradient problem during training, which prevents
the network from learning long-term dependencies in the input sequence.

� � tanh �

� +

�
�

tanh

mk�1

hk�1

xk

mk

hk

hk

fk
ik

m̃k

ok

ck

hk

Figure 2.2: Internal structure of a standard LSTM cell. Operators are colored yellow,
internal functions purple, activation functions blue, and external inputs and outputs
cyan. Weight matrices and bias vectors have been left out.

To solve this issue, the Long Short-Term Memory (LSTM) complements the standard
RNN with an additional cell memory mk and a gating mechanism that controls the
information flow within the cell according to the following recursive equations:

fk = � (W fhhk�1 +W fxxk + bf ) , (2.2a)

ik = � (W ihhk�1 +W ixxk + bi) , (2.2b)

ok = � (W ohhk�1 +W oxxk + bo) , (2.2c)

m̃k = tanh (Wmhhk�1 +Wmxxk + bc), (2.2d)

mk = fk �mk�1 + ik � m̃k, (2.2e)

hk = ok � tanh (mk), (2.2f)

where the operator � denotes the Hadamard product (i.e., the element-wise mul-
tiplication of vectors), the hyperbolic tangent tanh : R⌘ ! (�1, 1)⌘ is applied
element-wise, and the element-wise sigmoid logistic function �sigmoid : R⌘ ! (0, 1)⌘ is
used as an activation function:

�sigmoid(v)j =
1

1 + e�vj
, (2.3)
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for j = 1, . . . , ⌘ and v = [v1, . . . , v⌘]> 2 R⌘. Furthermore, the input xk 2 R� at
time step k is a vector of � input features, the bias vectors bf , bi, bo, bc 2 R⌘ have
length ⌘, and W fh,W ih,W oh,Wmh 2 R⌘⇥⌘ and W fx,W ix,W ox,Wmx 2 R⌘⇥� are
weight matrices. The cell memory mk 2 R⌘ at time step k is updated in (2.2e)
by applying the forget gate fk 2 (0, 1)⌘ from (2.2a) to the previous cell memory
mk�1, and the input gate ik 2 (0, 1)⌘ from (2.2b) to the new cell memory candidate
m̃k 2 (�1, 1)⌘ from (2.2d). The forget gate decides about the information that will
no longer be tracked in the cell memory, while the input gate chooses and scales the
elements of the new cell memory candidate that will be taken over. Next, the hidden
state hk 2 (�1, 1)⌘ at time step k is obtained in (2.2f) by employing the output
gate ok 2 (0, 1)⌘ from (2.2c) on the updated cell memory, with its range limited to
(�1, 1)⌘ by the element-wise hyperbolic tangent. The flow of information within the
LSTM cell is represented in Figure 2.2.
Overall, the LSTM cell has an increased memory compared to the standard RNN
cell. In consequence, LSTMs are often used as the core block in long-term deep
learning prediction models, which operate in a sequence-to-sequence fashion.
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Chapter 3

Multi-Step Grid Predictor

The ability to foresee the future development of the local road environment is
essential in autonomous driving, not only because anticipating events helps to avoid
accidents, but also to be able to achieve more comfortable and e�cient driving.
Thus, an autonomous vehicle has to understand the scene context and analyze
behavioral and motion patterns to draw hypotheses about the future. However,
tra�c scenarios typically involve a high degree of uncertainty, due to the deep
probabilistic dependencies of tra�c events, an almost unlimited amount of possible
outcomes, and the irrationality introduced by humans. In the past, handcrafted
probabilistic and heuristic models have been developed to forecast the future motion
of tra�c participants, but such models have been outperformed by novel deep learning
approaches, as in [HBD17, PKK+18, SHD19, MR19]. In this work, we consider an
Ego Vehicle (EV), i.e., the controlled agent, that interacts with external tra�c
participants, which are the Target Vehicles (TVs).
In this chapter, we explore two di↵erent RNN-based models for multi-step and long-
term prediction of dynamic objects in driving scenarios and propose a methodology
to derive probabilistic information that can later be useful in the grid-based SMPC
scheme. First, the general and shared predictor structure between the two data-driven
prediction models is introduced in Section 3.1. Next, some underlying concerns
about the training data are debated in Section 3.2. Lastly, the two deep neural
network based grid prediction models are presented as a multi-class classification in
Section 3.3 and a multi-output regression in Section 3.4.

3.1 General Multi-Step Prediction Model Struc-
ture

This section outlines the shared general structure that is followed in the classification
as well as in the regression model to obtain multiple steps of prediction outputs.
The multi-step prediction of multivariate time series data with a long-term prediction
horizon N 2 N is a sequence-to-sequence forecasting task that can generally be
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0 LSTM LSTM . . . LSTM LSTM . . . LSTM

X 1 X 2 XM

Y⇤
2

Y⇤
NY⇤

1

Initialization
Predictions

t
k �M + 1 k �M + 2 k k + 1 k +N � 1

. . . . . .

Figure 3.1: Unrolled structure of a general LSTM network used for multi-step predic-
tion. First, the evidence sequence {X 1, . . . ,XM} of length M is input sequentially
to the previously unitialized network, as shown by the initial zero-vector. In the next
phase, N predictions {Y⇤

1, . . . ,Y⇤
N} are generated in a recursive way. The LSTM

internal states mk and hk are propagated and updated through time, indicated by
the horizontal arrows. Below, the axis of the time t with the current sampling step k
can be found.

regarded as an optimization process: given a sequence ofM 2 N previous observations
at time step k, the objective is to minimize the prediction error of the forecasts for
prediction steps h = 1, . . . , N , where every prediction instant h corresponds to the
time stamp k + h.
In this work, we treat the data-driven forecast of the future evolution of dynamic
road scenarios first as a classification problem, which estimates probabilistic features
about the future TV motion, and later as a regression task, where the model output
is a deterministic prediction of the road environment. For both cases, the multi-
step prediction framework is constructed and trained following the same principle
to produce single-step forecasts recursively as a multi-step process, depicted in
Figure 3.1. The scheme is divided into two parts: an initialization phase, where
the observations are input to the network, and a multi-step prediction stage, which
repeats the inference step considering past model outputs as new evidence.
In the initialization phase or LSTM encoding process, a series of M observations Xm,
with m = 1, . . . ,M , is given to the prediction model sequentially. The observation
sequence ranges from sampling step k � M + 1 to the current sampling stamp k.
In the two prediction approaches examined in this work, the deep neural networks
have an LSTM block at the core, which is previously uninitialized and performs the
fundamental function of encoding the evidence sequence in the internal state vectors
mk and hk, which are described in (2.2e) and (2.2f) respectively, to summarize the
observation sequence in a low dimensional latent space representation. For that
purpose, the LSTM units need to find spatio-temporal correlations in the input
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sequence. In addition, further layers are found before the recurrent cells to support
the LSTM in capturing spatial patterns and abstract dependencies in the observations
and encode them into feature vectors. In the meantime, the produced system outputs
during the initialization phase until time instance k are discarded, as predictions
about past time steps are of little interest.
After the encoding phase, in the inference stage, the LSTM memory vectors mk

and hk, together with the last input of the observation sequence, are used for a first
single-step forecast. The single-step inference is then repeated recursively until the
prediction horizon N to generate the output sequence {Y⇤

1, . . . ,Y⇤
N} of predictions

Y⇤
h. Therefore, the output Y⇤

h�1 at prediction step h� 1 is fed back to the network
input at step h and treated as a new observation X h:

X h = Y⇤
h�1. (3.1)

Besides, the cell states mh�1 and hh�1 are further propagated and updated through
time. The described methodology is a common alternative to the LSTM Encoder-
Decoder structure used in [PKK+18, SHD19] and di↵ers mostly in the decoding
stage after the LSTM cell output.

3.2 Training Data

Even though RNNs and its variants, like LSTM networks, exhibit a high degree of
flexibility as they support multi-variate data and are able to handle sequences of
variable length (both for the input and for the output), the specific network setup
and the training strategy need to be designed around the training data. Nonetheless,
we also have to consider the context and later application of the predictions, namely
the grid-based SMPC method for trajectory planning in autonomous driving, to
shape the format of the data. Di↵erent environment representation approaches are
available, even within OGs, to model tra�c scenarios. The selected representation
algorithm is first presented and discussed in Section 3.2.1 and the collected data that
is used for training and evaluation is examined thereafter in Section 3.2.2.

3.2.1 Dynamic Object Tracks

There are various possibilities for environment representations that can be chosen
to train the prediction models. An essential feature of these representations is the
level of abstraction of the presented data, depending on the closeness to the sensory
information. The input data to the model can range from raw measurements to
thoroughly processed OGs. For instance, evidential OGs additionally apply the
Dempster-Shafer theory [Sha76] to fused sensor measurements to deliver probabilistic
information about free, statically, and dynamically occupied space. Moreover, a
method is described in [STW17] to derive object tracks from evidential OGs, by
first transforming them into evidential DOGs. These object tracks allow a concise
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description of dynamic agents on a road and are the environment representation of
choice. The selection is reasoned after a previous introduction of the object tracking
approach from [STW17].
The dynamic tracking algorithm operates on evidential OGs, to which a grid-based
particle filter is applied to extract estimates of the velocities of dynamic objects,
which are the TVs, to construct the evidential DOG. Thereby, the DOG represents
the dynamic environment as a grid with six channels, where each grid cell c 2 Gk at
time stamp k contains a measurement

⇣c,k =
h
m(Sc,k),m(Dc,k),m

⇣
{S,D}c,k

⌘
,m(F c,k),vc,k

i>
2 R6, (3.2)

with the static occupancy belief mass m(Sc,k), the dynamic occupancy belief mass

m(Dc,k), the unclassified occupancy belief mass m
⇣
{S,D}c,k

⌘
, the free space belief

mass m(F c,k), and the two dimensional Cartesian velocity distribution vc,k 2 R2

of the cell c 2 Gk at time step k. Next, dynamic cells are assigned individually
to an object track, which we designate with the index ⌧ for a total of T objects
⌧ = 1, . . . , T . New object tracks are founded on density-based dynamic cell clustering
and are updated over time using a non-linear constant turn rate and acceleration
motion model to describe clothoid paths, where the object geometry is approximated
by an oriented minimum bounding box. After using an unscented Kalman filter on
the object tracks, the set of cell measurements Z⌧,k = {zc,k | c 2 C⌧,k} associated to
a track ⌧ at step k, where C⌧,k ✓ Gk defines the set of cell indices belonging to the
track ⌧ at time stamp k, is mapped to a measurement vector

z⌧,k = [x⌧,k, y⌧,k, v⌧,k,�⌧,k, l⌧,k, w⌧,k]
> 2 R6, (3.3)

with the the track ⌧ and time k specific elements [x⌧,k, y⌧,k]
> as the two dimensional

reference position coordinates on the grid, the scalar velocity v⌧,k and angle �⌧,k, and
the length l⌧,k and width w⌧,k according to the bounding box model of the object
described by track ⌧ .
We additionally define the time series S⌧ of measurement vectors z⌧,k as in (3.3),
which describes the object track of an object ⌧ over all the sampling steps k:

S⌧ = {z⌧,k |, 8k} . (3.4)

Then, we can construct the set Tenv of time series S⌧ , which describes all object
tracks of the dynamic elements in a driving environment for an arbitrary period of
time:

Tenv = {S⌧ | ⌧ = 1, . . . , T } . (3.5)

Overall, the set Tenv is a robust representation of the dynamic part of driving scenarios
and is the selected data format to develop and train the prediction models. Although
environment representations that are closer to the sensor output would reduce the risk



3.2. TRAINING DATA 17

of errors in the early stages of the environment estimation pipeline propagating to the
next stages, thus leading to an overall deterioration of performance [MR19], dynamic
object tracks are an excellent alternative for vehicle trajectory prediction with deep
learning. First, there are two major disadvantages of raw sensor data compared to
DOGs and derivatives: not only do the occupancy and velocity distributions on the
DOG rely on sophisticated sensor fusion techniques that are di�cult to replace with
learning-based approaches, but DOGs also have a format that is independent of the
sensor configuration [HBD17], which broadens the scope of uses of the grid prediction
model. Furthermore, the object tracks from [STW17] additionally separate dynamic
from static objects, which enables to train the learning algorithms to concentrate
on dynamic objects. Otherwise, the prediction models could be biased towards
static forecasts, since driving environments are typically composed mostly of static
objects [MR19].

3.2.2 Data Collection

Before training the prediction models, measurement data is generated, collected, and
processed in a simulation environment. In the initial stage, raw measurements are
generated with the help of the microscopic tra�c simulator SUMO (Simulation of
Urban MObility) [LBBW+18], which models individual vehicles and their interactions
at a microscopic level in a space-continuous, time-discrete setting. The simulation
scenarios are highly customizable and di↵erent dynamic, behavioral, and probabilistic
models are available to configure the environment and tra�c.
We designed 32 independent road scenarios of a straight two-lane highway that vary
in the amount, type, and density of tra�c participants, as well as the environment
conditions. The shared layout of the roadway consists of a 3000m long one-way
highway divided into two 3.5m wide lanes with a maximum permissible speed of
33m/s and where lane changes are allowed along the entire length of the route.
The scenarios are intended to imitate and cover most of the situations that can be
observed in real driving circumstances, such as di↵erent ranges of road congestion,
partial obstruction of roadways, diverse uses of lanes, individual and group driving
behavior patterns, and varying vehicle conditions.
Each driving scenario is scanned in an egocentric view, where all the entities within
the local environment of the EV are sampled. The local environment is bounded
by the detection range of 100m of the EV, which results in the environment length
◆x = 2⇥ 100m = 200m. As the width of the two lanes on the highway is 3.5m, the
width of the sampled environment is ◆y = 2⇥ 3.5m = 7m. The size of the grid cells
is set to ax = 0.5m and ay = 0.25m, yielding a rectangular grid with the shape
G 2 R400⇥28. During the simulation, objects on the road may enter or leave the
detection zone freely. Tracking the local environment of a particular vehicle instead
of simulating a stationary sensor is advantageous considering that the grid-based
SMPC trajectory planning algorithm later operates in an egocentric perspective as
well. The processing of the raw position, velocity, and orientation measurements
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from the simulation into a set Tenv is performed in MATLAB R�.
We choose the sampling and prediction rate to be equal and denote the constant
period duration with T = 0.2 s. Hence, every scenario is recorded for 72 s at 5Hz,
which yields a total of 32 ⇥ 72 s = 2304 s of collected data. The 32 sequences are
then partitioned into 9 segments of 8 s each, where the first 4 s are used to initialize
the prediction model and the remaining 4 s are employed to evaluate the forecasts.
The total 32⇥ 9 = 288 sequence samples are further split randomly into a training
data set, which contains 80% of the sequence samples (231 samples), a validation
data set, composed by 10% of the sequence samples (29 samples), and a test data
set with the remaining 10% (28 samples).

3.3 Multi-Class Classification

In the following, the classification problem is inspected in Section 3.3.1, then the
beam search technique is presented in Section 3.3.2, the actual network architecture
and training methodology for the classification model are introduced in Section 3.3.3,
a method to derive a probabilistic representation for the grid-based SMPC method
is proposed in 3.3.4 and the general approach is evaluated in 3.3.5.

3.3.1 Problem Definition

General Objective

In a multi-step classification problem, the overall target is to learn to estimate the con-
ditional probability distribution Pr (Y1, . . . ,YN |X 1, . . . ,XM) of an output sequence
{Y1, . . . ,YN} of length N , given the input sequence {X 1, . . . ,XM} of length M .
Probabilistic predictions about the future can then be made by picking an output
sequence {Y⇤

1, . . . ,Y⇤
N} with a high probability value. Due to the recursive principle

that we follow to achieve multi-step predictions, introduced in Section 3.1, at every
inference step h, the model disposes of information about the observation sequence
{X 1, . . . ,XM} and additionally about the previous h� 1 forecasts

�
Y⇤

1, . . . ,Y⇤
h�1

 
.

Hence, the aim is to leverage all the information available at every prediction instant
h to approximate the conditional probability Pr (Y1, . . . ,YN |X 1, . . . ,XM) as:

Pr (Y1, . . . ,YN |X 1, . . . ,XM) ⇡
NY

h=1

Pr (Yh|X 1, . . . ,XM ,Y⇤
1, . . . ,Y⇤

h�1), (3.6)

where the conditional probability Pr (Yh|X 1, . . . ,XM ,Y⇤
1, . . . ,Y⇤

h�1) is estimated
sequentially at every single-step forecast h. For the case h = 1, there are no pre-
vious forecasts available and the evidence of the conditional probability in (3.6) is
just the the observation sequence {X 1, . . . ,XM}. Notably, at step h, the recurrent
structure of the LSTM network encodes the sequence

�
X 1, . . . ,XM ,Y⇤

1, . . . ,Y⇤
h�2

 

of past inputs until step h � 2, regardless of whether the inputs were actual ob-
servations or previous predictions, into the internal states mh�1 and hh�1, where



3.3. MULTI-CLASS CLASSIFICATION 19

the cell memory mh�1 acts fundamentally as a long-term memory and the hidden
state hh�1 as a short-term memory. Consequently, the probability distribution
Pr (Yh|X 1, . . . ,XM ,Y⇤

1, . . . ,Y⇤
h�1) at step h is successively approximated to

Pr (Yh|X 1, . . . ,XM ,Y⇤
1, . . . ,Y⇤

h�1) ⇡ Pr (Yh|mh�1,hh�1,Y⇤
h�1), (3.7)

given the cell states mh�1 and hh�1 and the sample Y⇤
h�1 of the output sequence

at step h � 1. Ultimately, the results from (3.6) and (3.7) lead to the following
approximation of the probability Pr (Y1, . . . ,YN |X 1, . . . ,XM):

Pr (Y1, . . . ,YN |X 1, . . . ,XM) ⇡
NY

h=1

Pr (Yh|mh�1,hh�1,Y⇤
h�1). (3.8)

In essence, (3.8) describes the predictive modeling task of our multi-step classification
problem as a succession of single-step deductions as in (3.7), where the output
Pr (Yh|mh�1,hh�1,Y⇤

h�1) of the LSTM-based network at every prediction step h
is a multinoulli distribution that models the probability of each possible outcome,
represented by a categorical label, individually as a discrete probability distribution.
In a multi-class classification, the multinomial categorical distribution at the net-
work output is obtained by applying the softmax function �softmax to the vector of
activations x = [x1, . . . , x⇤]

> 2 R⇤ of the last network layer:

�softmax : R⇤ !
(
�(x) 2 (0, 1)⇤ | �(x)j � 0,

⇤X

�=1

�(x)j = 1

)
, (3.9a)

�softmax(x)� =
ex�

P⇤
i=1 e

xi
, (3.9b)

for � = 1, . . . ,⇤, assuming ⇤ � 2. Thereby, the network output is a normalized
vector that shares the properties of a probability distribution, as indicated in the
codomain in (3.9a), and models the distribution of a categorical random variable
with ⇤ possible categorical outcomes, where the i-th class is coded as a one-hot
vector, which is a vector with a one in the i-th element and zeros elsewhere.

Input and Output

Furthermore, the selected random variable predicted at the network output has to
be a discrete and dependent variable, given a group of independent variables, that
can be modeled categorically. According to the discussion in Section 3.2.1, the set
Tenv of object tracks S⌧ for ⌧ = 1, . . . , T from (3.5) is the chosen representation of
the dynamic environment. Therefore, the measurement vector z⌧,k of track ⌧ at time
step k from (3.3) can be put in sequentially to the network to predict the future
of a single object track. Ergo, we define the observation Xm at observation step
m = 1, . . . ,M that is used to form the evidence sequence {X 1, . . . ,XM} for the
multi-class classification model as

Xm = z⌧,k�M+m 2 R6, (3.10)
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where k denotes the current sampling instant and we omit the subscript ⌧ from
the observations Xm and later from the targets Ym for simplicity. However, it is
computationally ine�cient to discretize all the variables represented by the vector
elements in z⌧,k to model the object track as a categorical random variable at the
predictor output as well, as the number of classes increases exponentially with each
additional variable. Notwithstanding, we can take advantage of the already discrete
reference position [x⌧,k, y⌧,k]

> at the center of the front side of the box model of
an object track ⌧ , which is associated to the coordinates of a cell ci,j,k 2 Gk on
the OG Gk at time stamp k, to express the predicted position of the vehicle as a
categorical vector that describes ⇤ = ◆x

ax
⇥ ◆y

ay
possible outcomes. In turn, the label

Ym at observation step m = 1, . . . ,M that is employed to form the label sequence
{Y1, . . . ,YM} used for training is defined as a categorical vector, given by

Ym = Proj1

⇣
[x⌧,k�M+m+1, y⌧,k�M+m+1]

>
⌘
2 {0, 1}⇤ , (3.11)

where k is the current sampling stamp and the projection Proj1 : R2 ! {0, 1}⇤ maps
the position [x⌧,k�M+m+1, y⌧,k�M+m+1]

> of the dynamic object represented by track
⌧ one time step after the measurement vector in Xm from (3.10), into a one-hot
encoded categorical vector Ym of length ⇤, which is the cardinality of the possible
outcomes at a prediction step h. The temporal shift of one time step between the
inputs Xm and the labels Ym trains the prediction model to perform single-step
forecasts.
In summary, the classification task of the grid prediction model is to successively
estimate the categorical probability distribution Pr (Yh|mh�1,hh�1,Yh�1) of the
next position of an object on the OG, given the past object track as evidence. The
search technique to select an outcome Y⇤

h from the categorical distribution is reviewed
later in Section 3.3.2.
After that, the next inference step of the multi-step prediction is repeated as a
single-step forecast, where the previously generated output Y⇤

h�1 is fed back to the
input of the predictor as new evidence, as noted in (3.1). However, the model output
and input have diverse data formats and represent di↵erent information. Therefore,
we need a second projection Proj2 : {0, 1}

⇤ ! R6, given by

ẑ⌧,h�1 = Proj2
�
Y⇤

h�1

�
, (3.12)

which maps the categorical output Y⇤
h�1 of the model at prediction step h� 1 into

an approximative measurement vector

ẑ⌧,h�1 =
h
x̂⌧,h�1, ŷ⌧,h�1, v̂⌧,h�1, �̂⌧,h�1, l̂⌧,h�1, ŵ⌧,h�1

i>
2 R6, (3.13)

following the definition from (3.3), that can be used as an input X h to the model at
step h

X h ⇡ ẑ⌧,h�1. (3.14)



3.3. MULTI-CLASS CLASSIFICATION 21

In consequence, the equation (3.1) is approximated as X h ⇡ Proj2
�
Y⇤

h�1

�
with the

help of Proj2. In the first place, the grid cell coordinates [x⌧,h�1, y⌧,h�1]
> associated

to the chosen output category Y⇤
h�1 at prediction step h� 1 are directly obtained

with the inverse of the first projection Proj�1
1 : {0, 1}⇤ ! R2 as

[x̂⌧,h�1, ŷ⌧,h�1]
> = Proj�1

1

�
Y⇤

h�1

�
. (3.15)

Next, the scalar velocity v̂⌧,h and orientation �̂⌧,h measures are approximated as
the polar representation of the estimated velocity vector [�x̂⌧,h,�ŷ⌧,h]

>, which is
calculated as

[�x̂⌧,h�1,�ŷ⌧,h�1]
> =

⇣
[x̂⌧,h�1, ŷ⌧,h�1]

> � [x̂⌧,h�2, ŷ⌧,h�2]
>
⌘
/T, (3.16)

where [x̂⌧,h�1, ŷ⌧,h�1]
> and [x̂⌧,h�1, ŷ⌧,h�2]

> are the grid cell coordinates associated
to the chosen output category at prediction steps h � 1 and h � 2 respectively
and are obtained with (3.15), while T designates the sampling and inference times
simultaneously. Then, the remaining elements of the approximative measurement
vector ẑ⌧,h�1 of the dynamic object track ⌧ at prediction step h� 1 are estimated
according to the following procedure, which together with (3.15) forms the projection
Proj2 from (3.12):

v̂⌧,h�1 =
���[�x̂⌧,h�1,�ŷ⌧,h�1]

>
���
2
, (3.16a)

�̂⌧,h�1 = atan2 (�ŷ⌧,h�1,�x̂⌧,h�1), (3.16b)
h
ŵ⌧,h�1, l̂⌧,h�1

i>
= [w⌧,h�2, l⌧,h�2]

> , (3.16c)

given the grid cell coordinates ci,j,h�1, the estimated velocity vector [�x̂⌧,h�1,�ŷ⌧,h�1]
>

from (3.16), and the object width w⌧,h�2 and length l⌧,h�2 at step h � 2. The op-
erator kvk2 =

p
v21 + · · ·+ v2nv

denotes the Euclidean norm of an arbitrary vector
v = [v1, . . . , vnv ]

> 2 Rnv with nv 2 N and the four-quadrant inverse tangent
atan2 : R2 ! (�⇡, ⇡] is used to approximate the orientation of the object as its
estimated yaw angle:

atan2(y, x) =

8
>>>>>>>><

>>>>>>>>:

arctan
�
y
x

�
, if x > 0,

arctan
�
y
x

�
+ ⇡, if x < 0 and y � 0,

arctan
�
y
x

�
� ⇡, if x < 0 and y < 0,

⇡
2 , if x = 0 and y > 0,

�⇡
2 , if x = 0 and y < 0,

0, if x = 0 and y = 0.

(3.17)

3.3.2 Beam Search Algorithm

Multiple search approaches are introduced in [Neu17] to select an output Y⇤
h from

the categorical distribution Pr (Yh|mh�1,hh�1,Y⇤
h�1) at the output of the network
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at prediction step h as the next single-step prediction. The greedy best search
algorithm that simply picks the candidate that maximizes the probability distribution
Pr (Yh|mh�1,hh�1,Y⇤

h�1) at every inference step h as

Y⇤
h = argmax

Yh

Pr (Yh|mh�1,hh�1,Y⇤
h�1) (3.18)

is typically the choice for single-step classification tasks. However, we perform
the single classification step successively and thus aim to maximize the conditional
probability Pr (Y1, . . . ,YN |X 1, . . . ,XM) of the total output sequence {Y1, . . . ,YN},
which may not always be the result of optimizing the single-step probability distribu-
tion at all prediction steps h as in (3.18). For instance, it could be the case that a
false initial prediction leads to less likely or uncertain events that would otherwise
not have been considered with a di↵erent initial forecast. In this scenario, the error
from the early prediction is propagated to the following steps. Alternatively, the cat-
egorical distribution Pr (Yh|mh�1,hh�1,Y⇤

h�1) could be a multimodal distribution,
which is often the case in nature and real-life situations like driving environments,
where di↵erent outcomes Yh form equally good hypotheses.
To reduce the impact of the potential production of false or uncertain predictions
due to the maximization of the one-step probability distribution, the beam search
algorithm has become popular in the fields of neural machine translation and text
generation [Neu17]. Instead of selecting a single hypothesis Y⇤

h at each inference
step h, the beam search algorithm chooses and keeps the W 2 N best candidates
Y⇤

h,!, where W denotes the beam width and ! = 1, . . . ,W . For this purpose, we first
compute the W output probability distributions Pr (Yh,!|mh�1,!,hh�1,!,Y⇤

h�1,!) at
prediction step h, given the W LSTM states mh�1,! and hh�1,!, and the W previous
prediction hypotheses Y⇤

h�1,!. Then, a score vector sh,! 2 R⇤<0 is assigned to each
of these W vector probability distributions by computing the element-wise natural
logarithm log : R⇤>0 ! R⇤ of the probability distribution:

sh,! = log
�
Pr (Yh,!|mh�1,!,hh�1,!,Y⇤

h�1,!)
�
. (3.19)

In this way, the score of an arbitrary sequence of outputs can be obtained as the
sum of the respective individual scores. For instance, the probabilities of the best W
previous output sequence hypotheses

�
Y⇤

1,!, . . . ,Y⇤
h�1,!

 
at prediction step h � 1,

which are given by

Pr (Y⇤
1,!, . . . ,Y⇤

h�1,!|X 1, . . . ,XM) ⇡
h�1Y

i=1

Pr (Y⇤
i,!|mi�1,!,hi�1,!,Y⇤

i�1,!), (3.20)

are each assigned a score sseqh�1,! 2 R� by summing up all the scores si,!,Y⇤
i,!

of the
previously chosen sequence samples Y⇤

i,! for i = 1, . . . , h� 1 as

sseqh�1,! =
h�1X

i=1

si,!,Y⇤
i,!
. (3.21)
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Finally, the overall scores of all W ⇥⇤ sequence candidates at step h are obtained as
the sum sh,! + sseqh�1,! of the score vectors sh,! from (3.19) of new potenital outcomes
and the scalar value sseqh�1,! from (3.21) that assigns a score to each of the W sequences
of previous outcomes until step h� 1. Among these, only the W candidates with
the highest total scores are chosen as possible predictions Y⇤

i,!, e↵ectively pruning
the remaining W ⇥ ⇤�W candidate sequences from the search tree. An example of
the beam search algorithm, where the greedy best search approach would fail to find
the best output sequence, is shown in Figure 3.2.

sseq1,1 =
�0.84

sseq1,2 =
�1.31

sseq1,3 =
�1.20

sseq2,1 =
�2.27

sseq2,2 =
�1.76

sseq2,3 =
�1.86

sseq2,4 =
�4.20

sseq2,5 =
�3.86

sseq2,6 =
�1.33

s1,1,1
= �0.84

s1,1,2 = �1.31

s1,1,3 = �1.20

s2,1,
1
= �1.4

3

s2,1,2
= �0.92

s2,1,3 = �1.02

s2,2,1 = �3.00

s2,2,2 = �2.66

s2,2,3 = �0.13

Figure 3.2: Beam search on an example search tree for N = 2 prediction steps, where
the number of possible output categories ⇤ is ⇤ = 3 and the beam width W is chosen
to W = 2. Green nodes are selected by the beam search, red nodes are pruned. The
symbol sh,!,j represents the j-th element of the w-th score vector for prediction step
h and sseqh,i is the score of the i-th sequence candidate at step h, where h = 1, . . . , N ,
! = 1, . . . ,W , � = 1, . . . ,⇤, and i = 1, . . . ,W ⇥ ⇤. Figure inspired by [Neu17].

3.3.3 Network Architecture and Training Procedure

Network Architecture

The neural network used for classification has a rather shallow architecture, with one
LSTM layer followed by two stacked Fully Connected (FC) feedforward layers. The
observed data is put sequentially into an input layer of size 6, which is the length of
the measurement vectors from (3.3). Then, the core LSTM processes the multivariate
time-series data into the latent space vectors mh 2 R512 and hh 2 R512 at a step
h. Lastly, the two FC layers, one of size 512 and with the hyperbolic tangent tanh
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activation function, and the other of size 11200 and with the final softmax activation
function, help to capture spatial dependencies and construct the output categorical
distribution. The output length of 11200 corresponds to the number of grid cells in
the grid G for the later evaluation setup and the number of classes is therefore also
given as ⇤ = 11200. The network architecture is illustrated in Figure 3.3.

X h

Pr (Yh|mh�1,hh�1,Y⇤
h�1)

512LSTM

512 tanhFC

11200 softmaxFC

6Input

Figure 3.3: Architecture of the LSTM network used to predict the future of dynamic
tra�c scenarios as a classification task. The input X h is a vector with 6 elements and
the output Pr (Yh|mh�1,hh�1,Y⇤

h�1) is a vector probability distribution of length
11200. For the evidence of the conditional probability at the network output, we
assume that (3.1) is given. Every layer is represented as a container with at least
two elements: the layer type in cyan, the output size in purple, and optionally the
activation function in yellow. The width of the container varies depending on the
number of units on the layer and the activations are propagated between the layers,
as depicted by the vertical arrows.

Training Procedure

During the initialization and prediction stages, the network produces a total of
M + N � 1 single-step predictions, where the first M � 1 forecasts (during the
initialization) are discarded, as described in Section 3.1. Thus, the network is trained
to produce M +N � 1 single-step predictions by choosing the observation sequence
length M train and the prediction horizon N train for training as

M train = M +N � 1, N train = 1. (3.22)

Later, during the prediction phase, the first N � 1 network outputs are treated as
new evidence, which justifies training the network with a longer observation length
as in (3.22).
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We use the Adam [KB14] solver to train the presented neural network. The training
algorithm performs a stochastic optimization of the network parameters based on
the error measure given by the loss function L. The training hyperparameters, as
well as the previously exposed network architecture and hyperparameters, are tuned
with the the Experiment Manager app of the Deep Learning Toolbox

TM

[TM21]
in MATLAB R�, based on an automated empirical optimization process that tries
out multiple di↵erent combinations exhaustively. The initial learning rate is set
to 0.002 and is updated every 90 epochs by multiplying with 0.2. The size of the
mini-batch is chosen to 128 and the training process is terminated whenever the
generalization stops to improve, which we consider when the loss on the validation
data set, measured every 10 iterations, does not decrease for 5 consecutive times.
As the loss function, we make use of the cross-entropy loss for single-label classification
and weighted classification tasks with mutually exclusive classes that comes with the
Deep Learning Toolbox

TM

:

Lclass = � 1

M train

MtrainX

m=1

⇤X

�=1

��tm,� log ⇢m,�, (3.23)

with the weight �� for class �, the indicator tm,� that the m-th observation belongs
to the �-th class, and ⇢m,� is the output for sample m for class i, which is the value
from the softmax function.

3.3.4 Probability Grid Derivation

This section presents a technique to find an alternative grid representation to the
OG that additionally models probabilistic uncertainties, based on the raw output
of the grid prediction module. Building on top of the standard OG, a Probability
Grid (PG) is computed at every prediction step h to model the local environment

stochastically. The PG consists of a grid P 2 R
◆x
ax

⇥ ◆y
ay of occupancy values pi,j 2 P

that describe the likelihood of the cell being occupied. However, this value is the
result of multiple operations on di↵erent probability density functions and hence
does not correspond to the probability value stored at the analogous cell ci,j in the
OG. In this section, we propose an approach to build a PG from the output of the
classification multi-step prediction module.
The advantage of modeling the multi-step prediction task as a classification problem
is that the categorical distributions Pr (Yh|mh�1,hh�1,Y⇤

h�1) at the output of the
softmax layer at every prediction step h, i.e., before choosing an outcome Y⇤

h, already
have the format of a probability grid map unrolled as a ⇤ dimensional vector.
However, we have T ⇥W such probability distributions with W sequence hypotheses
for each of the T 2 N TVs in the scenario. Consequently, the T ⇥W categorical
probability distributions at the end of the neural network prediction pipeline at every
prediction stamp h, which we abbreviate with

Ph,⌧,! = Pr (Yh,⌧,!|mh�1,⌧,!,hh�1,⌧,!,Y⇤
h�1,⌧,!), (3.24)
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where ⌧ 2 T and ! = 1, . . . ,W , have to ultimately be aggregated to form a single
and valid PG Ph.

Union of Hypotheses

The first step is to combine the W hypotheses available at a prediction step h for a
TV ⌧ . The PGs Ph,⌧,! are aggregated as a weighted sum

pi,j,h,⌧ =
WX

w=1

"!pi,j,h,⌧,!, (3.25)

where the weights "! are obtained as the probability of the w-th hypothesis sequence
exp

�
sseqN,!

�
, given the sequence score sseqN,! from (3.21) at prediction step N , normalized

as

"! =
exp

�
sseqN,!

�
PW

i=1 exp
�
sseqN,i

� , (3.26)

for ! = 1, . . . ,W . As a result, the previous T ⇥W PGs Ph,⌧,! are reduced into T
PGs Ph,⌧ at every prediction step h.

Grid Filtering

Before the T probability distributions Ph,⌧ are also united into a single PG Ph, each
of the aggregated categorical distributions Ph,⌧ at every step h first needs to undergo
some adaptations. There are two issues that need to be addressed to produce a
valid PG that can later be used for trajectory planning. First, the probabilities at
the predictor output belong to the random variable that models the presence of a
point-mass object in each cell of the grid. Conversely, the PG that is used to derive
the drivable space in the grid-based SMPC routine models for every grid cell the
likelihood of the cell being occupied by any box object in the surroundings of the
EV. Second, no prediction uncertainty is given by the deep learning model, while the
grid-based SMPC scheme additionally provides a probabilistic framework to account
for possible prediction errors by considering uncertainty in the forecasts.
The first concern can be approached by expanding the probability values pi,j,h,⌧ 2 Ph,⌧

of the T distributions at step h additively along the box dimensions of the TV ⌧ .
Furthermore, a probabilistic uncertainty model can be derived based on a measure
of model confidence during the multi-step predictive task and then applied to the
PG to solve the second subject.
Contemplating a PG as a single channel pixel map, we approach the PG modification
task with image processing techniques. In particular, we apply a series of low-pass
blurring filters, each of which fulfills a di↵erent function. For simplicity, we omit the
subscripts h and ⌧ in the following discussion. Also, we consider the PG P to be
resized to the size ◆x

ax
⇥ ◆y

ay
of the OG G, as introduced in Section 2.2. An artificial

example of such a categorical probability distribution is illustrated in Figure 3.4a.
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(a) Artificial categorical distribution, reshaped as a grid map. Each cell
holds a value pj,j,h,⌧,! 2 Ph,⌧,! that models the likelihood of the presence
of a point-mass object on the grid cell ci,j .
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(b) Result after box filtering to represent the TV as a box object. The
box model size of the TV is chosen exemplarily to l = 7ax and w = 3ay.
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(c) Gaussian filtering to model prediction uncertainty. The variance
measures �2

x and �y are set exemplarily to �2
x = 0.5 and �2

y = 0.75.

Figure 3.4: The qualitative e↵ect of the box and Gaussian filtering on a categorical
probability grid map.

In general, the principle of the filtering procedures used in this work is to convolute
a two dimensional kernel K over an image, which is in this case the PG P . The two
dimensional discrete convolution of a PG P with probability values pi,j 2 P with an
arbitrary kernel K with elements ki,j 2 K, where the indices i and j indicate the
two spatial dimensions, is given by

pi,j =
1X

q=�1

1X

r=�1
pq,ri�q+1,j�r+1. (3.27)

For the purpose of extending the probability values of the modeled point-mass
according to the box model of the TV to cover the vehicle area, we apply a box

linear filter with a two dimensional kernel Kbox 2 {0, 1}l
box
x ⇥lboxy to the PG P , where

lboxx 2 N and lboxy 2 N denote the length and the width of box kernel. Every element
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box
i,j 2 Kbox is assigned a value as follows:

box
i,j =

(
1, if 1  i 

⌃
lboxx /2

⌥
and 1  j  lboxy

0, otherwise,
(3.28)

with he indices i = 1, . . . , lboxx and j = 1, . . . , lboxy , the ceiling operation d·e, and the
kernel lengths lboxx and lboxy as

lboxx = 2l/ax � 1, lboxy = w/ay. (3.29)

The parameters and the zero-elements in the kernel are designed such that the box
linear filtering expands every probability value in P along the bi-dimensional shape
of the TV, considering the fact that the reference position of the TV (i.e., the position
of the point of mass) is given as the grid cell coordinates associated to the center of
the front side of the box model representation of the vehicle. We assume that the
TV is oriented in the positive x direction, which results in an unoriented box model
given by the kernel Kbox. While this is su�cient to demonstrate the method in the
later simulation setup, where the yaw angle � of the TVs stays relatively close to
zero, an oriented box kernel can also be estimated individually for each TV following
the same approximative approach as in (3.16b). The e↵ect accomplished by the
presented box filtering procedure is depicted in Figure 3.4b.
Next, the prediction uncertainty must be integrated into the PG artificially, as the
probabilistic values in P do not contain any information about the model confidence.
Thus, we can apply an additional smoothing filter, which allows to model uncertainty
in the TV motion with an arbitrary probability distribution. In an exemplary way,
we show the method with a Gaussian filter that uses a two dimensional Gaussian
kernel KGauss 2 (0, 1)l

Gauss
x ⇥lGauss

y , where lGauss
x 2 N and lGauss

y 2 N describe the length
of the kernel in both spatial dimensions. We additionally define a help function
center : G ! N2 that outputs the two spatial indices [i, j]> belonging to a cell ci,j
on the grid G. Then, the elements Gauss

i,j 2 KGauss of the kernel are given by

Gauss
i,j =

exp
⇣
�1

2 (center (ci,j)� µ)> ⌃�1 (center (ci,j)� µ)
⌘

p
(2⇡)2 det⌃

, (3.30)

with the indices i = 1, . . . , lGauss
x and j = 1, . . . , lGauss

y , the mean vector µ 2 N2, the
position covariance matrix ⌃ 2 R2⇥2, and the precision matrix ⌃�1 2 R2⇥2. The
mean µ, which is established as the center of the kernel, and the covariance ⌃ are
defined as

µ =


lGauss
x /2
lGauss
y /2

�
, ⌃ =


�2
x 0
0 �2

y

�
. (3.31)

The variance measures �2
x and �2

y are the square of the standard deviations �x and
�y respectively, which can be chosen as an arbitrary prediction error value, measured
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on the test data set. If chosen appropriately, the error measures can be interpreted
as an expected deviation in each direction that can be used for the covariance matrix
⌃. Then, the size of the kernel can also be determined as

lGauss
x = 2d2�xe+ 1, lGauss

y = 2d2�ye+ 1. (3.32)

The chosen size guarantees that lGauss
x and lGauss

y are odd integers and keeps the
kernel dimensions manageably small, while still ensuring that most of the data in
the Gaussian distribution, which is typically found within a distance of twice the
standard deviation from the mean in each dimension, is considered. The qualitative
e↵ect that is accomplished with the Gaussian filter is illustrated in Figure 3.4c

After applying both filters to the PG, we normalize P to share the properties of a
probability distribution. Assuming that the probability values pi,j are all already
non-negative (pi,j � 0), which should be guaranteed by the previous steps, the PG is
normalized by scaling every element pi,j 2 P with the inverse of the sum of all the
elements in P as

pi,j =
pi,jP
p2P p

. (3.33)

The described normalization step in (3.33) also guarantees that the values pi,j are less
or equal to one (0  pi,j  1), which is a requirement for the following modification
to the PG.

Besides, it is worth to mention that we intentionally aggregate the W hypotheses
before the filtering process to prioritize the computational e�ciency and avoid W
repetitions of the convolutional filtering. Otherwise, the same box filter could be
applied to each of the W probability distributions P!, followed by a Gaussian filter
with a di↵erent uncertainty measure for each hypothesis.

Combination of Objects

For the rest of this section, we reintroduce the subscripts h and ⌧ . We now consider
each of the T distributions Ph,⌧ at every prediction step h to be valid PGs that are
mature to be used in the grid-based SMPC trajectory planning method. As a final
step, it remains to aggregate the T forecasts made for each TV into a single PG Ph,
such that the final output of the grid prediction module is a sequence {P1, . . . ,PN}
of length N of unique PGs. The T predictions for each TV at step h are combined
as follows:

pi,j,h = 1�
Y

⌧2T

(1� pi,j,h,⌧ ) , (3.34)

e↵ectively forming a single PG Ph for step h.
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3.3.5 Evaluation and Discussion

Training Results

We implement and train the neural network presented in Section 3.3.3 with the Deep
Learning Toolbox

TM

in MATLAB R�. The length of the initialization and prediction
phases are selected as M = 20 and N = 20, whereas the sampling and prediction time
T is T = 0.2 s. In total, the network produces 20 predictions with a long-term time
horizon of N⇥T = 4 s. Thus, each sequence sample has a length of (M+N)⇥T = 8 s,
as mentioned in Section 3.2.2.

However, each scenario includes a varying amount of vehicles. Since the network is
not given information about the entire driving environment, as represented by the
set Tenv, but only the measurement tracks of each individual TV, as described by the
measurement sequences S⌧ , the data samples used for training are di↵erent as the
training data sets introduced in Section 3.2.2. We additionally separate each of the
time series measurements S⌧ for every TV into a di↵erent sample and consider only
the TVs that are within the detection range of the EV for the entire length of the
sequence sample, we obtain a total 481 sequence samples for individual object tracks,
which are split into a training data set with 385 sequence samples, and validation
and test data set with 48 sequences each.

After the training process, which ended after 870 iterations, we evaluate the prediction
accuracy of the neural network measuring the Top-⌦ Mean Absolute Error (MAE),
as suggested in [PKK+18]. In the following, only the subscript h is used for simplicity.
Given ⌦ network output candidates, where ⌦ must be less or equal to the beam
width W (⌦  W ), we find the output Y⇤

h that best approximates the corresponding
target label Yh. Then, the Top-⌦ MAE⌦h at a step h, together with the Top-⌦
X-MAE⌦h and Y-MAE⌦h in the Cartesian x and y directions, is calculated as

MAE⌦h =
1

 

 X

 =1

����


x⇤
 ,h

y⇤ ,h

�
�

x ,h
y ,h

����� , (3.35a)

X-MAE⌦h =
1

 

 X

 =1

��x⇤
 ,h � x ,h

�� , (3.35b)

Y-MAE⌦h =
1

 

 X

 =1

��y⇤ ,h � y ,h
�� , (3.35c)

where  is the number of samples in the test data set, |·| denotes the operator that
returns the absolute value, x⇤

 ,h and y⇤ ,h are the grid cell coordinates of the grid cell
encoded in Y⇤

h, and x ,h and y ,h are the analogous coordinates in the ground truth
Yh. Similarly, we also compute the general Top-⌦ standard deviation �⌦h of the
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predictions and the Top-⌦ standard deviations �⌦x,h and �⌦y,h in x and y directions as

�⌦h =

vuut 1

 � 1

 X

 =1

����


x⇤
 ,h

y⇤ ,h

�
�

x ,h
y ,h

�����
2

, (3.36a)

�⌦x,h =

vuut 1

 � 1

 X

 =1

��x⇤
 ,h � x ,h

��2, (3.36b)

�⌦y,h =

vuut 1

 � 1

 X

 =1

��y⇤ ,h � y ,h
��2. (3.36c)

This way, the error measures �⌦x,h and �⌦y,h can be interpreted as the expected
deviation of the predictions from the targets and are suitable candidates to model
the standard deviation of the probability density function used in Section 3.3.4 as
follows:

�x = �⌦x,h/ax, �y = �⌦y,h/ay, (3.37)

where we divide by the respective grid cell lengths ax and ay to return the values in
the format of grid cell indices. The Top-⌦ MAE performance values from (3.35) and
Top-⌦ standard deviations with ⌦ = 3, measured for prediction steps h = 1, . . . , 20
on all the samples in the test data set, can be found in Table 3.1.

Discussion

In Section 3.3, we have studied a multi-class classification LSTM network to produce
multiple steps of forecasts about the future motion of a dynamic object in a tra�c
environment with a long-term prediction horizon. Subsequently, we proposed an
approach to derive a probabilistic map of the environment that can be utilized in
the grid-based SMPC method at a later stage.
After evaluating the results on a test data set obtained from di↵erent simulations, we
found that the model is able to accurately forecast the future position of a TV, but the
prediction accuracy rapidly decays over time, especially between prediction steps h = 1
and h = 2. While a performance degradation over the time is expected and common
in similar forecasting tasks, there are a number of factors that contribute to this
phenomenon. In the first place, the approximative mapping Proj2, which estimates
the missing variables needed for the network input given the lower dimensional
prediction output, introduces new uncertainty to the model artificially. Besides, the
data samples on which the model operates include measurements that are relative
to the EV, whose motion is unknown to the classification predictor. Moreover, no
contextual information about the surrounding environment is taken into account in
the evidence used for inference, so that the model cannot possibly be situationally
aware and the interactions between the di↵erent agents on the road. Other aspects
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that may negatively a↵ect the profitability of the developed model are the inability
to predict TVs entering or leaving the detection range and an eventually high
computational cost when the beam width W is set to high values.
Nevertheless, considering the prediction of the TV motion as a classification task
still o↵ers some advantages that make the presented approach attractive, especially
for the later application in the grid-based SMPC trajectory planning scheme. For
instance, the probability distribution at the network output allows to account for
the probabilistic nature of driving environments and can directly be used to extract
a PG afterwards. In addition, the predictor is able to produce multimodal forecasts
thanks to the beam search algorithm, where the beam width W can be adjusted
depending on the available computational resources. Also, the error measure used to
model the uncertainty in the TV motion is a good estimate of the deviation from
the target values. Lastly, the fact that the network outputs are individualized for
each TV gives a high degree of control over the PG, as di↵erent probabilistic models
or variance measures could be employed.

3.4 Multi-Output Regression

Contrary to the classification model from Section 3.3, which produces a series of
probabilistic outputs at every time step h that need to be aggregated thereafter, in this
section, we develop a simpler regression grid predictor that only requires one forward
pass through the network at every prediction step h and thus less intermediate steps
afterwards. On the one hand, the regression system aims to reduce the computational
cost and provide a faster prediction framework, but on the other hand, it comes at the
expense of rejecting the probabilistic and multimodal nature of tra�c environments
and assuming a deterministic universe with a unique outcome for every situation.
First, the regression problem addressed with the prediction model is introduced in
Section 3.4.1. Next, we present the network architecture and the training strategy
in Section 3.4.2, followed by the approach to derive a probabilistic map from the
prediction output in Section 3.4.3. The chapter closes in Section 3.4.4 with the
evaluation of the model and a discussion of the measured results.

3.4.1 Problem Definition

General Objective

In a neural regression problem, the objective is to learn the relationships between the
input and output variables to approximate the underlying mapping that connects the
inputs to the outputs. In general terms, we want to estimate an unknown function f
that produces the next prediction Y⇤

h, given the observation sequence {X 1, . . . ,XM}
of length M and the previous single-step forecasts

�
Y⇤

1, . . . ,Y⇤
h�1

 
until step h� 1

with h = 1, . . . , N as

Y⇤
h = f

�
X 1, . . . ,XM ,Y⇤

1, . . . ,Y⇤
h�1

�
, (3.38)
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where the same function f is used for all prediction steps h and the inputs and
outputs live in the same domain. Similarly to the discussion in Section 3.3.1, the
sequence

�
X 1, . . . ,XM ,Y⇤

1, . . . ,Y⇤
h�2

 
of events that have been given to the network

as past evidence until prediction stamp h � 2 is in fact encoded into the LSTM
internal states mh�1 and hh�1 used in the prediction phase. Hence, the mapping f
is approximated by the neural network as a function NN, given by

f
�
X 1, . . . ,XM ,Y⇤

1, . . . ,Y⇤
h�1

�
⇡ NN

�
mh�1,hh�1,Y⇤

h�1

�
, (3.39)

whereas the network structure that forms the mapping NN needs to minimize the
prediction error. Therefore, the neural architecture must possess su�cient parameters
and non-linearities, which are introduced by the activation functions at each layer, to
model the function f adequately as in (3.39). Then, we can estimate the single-step
model output Y⇤

h at every prediction step h in the following way:

Y⇤
h ⇡ NN

�
mh�1,hh�1,Y⇤

h�1

�
. (3.40)

Input and Output

Furthermore, we address the multi-step predictive task with a multivariate multi-
output time series regression with the intention of yielding a deterministic estimate
of the entire picture of the scenario at the network output Y⇤

h. Thereby, all dynamic
objects on the grid are modeled jointly in a shared data structure, which is employed
both for the inputs X k and the labels Yk used for supervised training. The object
tracks kept in the set Tenv from (3.5) are mapped onto a binary OG of values in
{0, 1}, where the cells that are occupied according the oriented box model of any of
the TVs ⌧ 2 T within the detection range are assigned a one on the grid, and the
remaining cells are filled with zeros.
The observation samples Xm during the initialization phase include the EV in the
OG with the environment evidence. Hence, during the prediction phase, the box
model of the EV is introduced to the previous prediction Y⇤

h�1 before executing (3.1).
For the future EV motion, we use the SMPC trajectory ⇠EVk�1,h computed at time
step k � 1 for predictions h = 2, . . . , N .
Since the data format is an OG of binary values, the network output has to be
restricted to the interval [0, 1]⇤, which can be achieved by applying a clipped Rectified
Linear Unit (ReLU) �ReLU(x) : R⇤ ! [0, 1]⇤ to the vector of activations x =
[x1, . . . , x⇤]

> 2 R⇤ of the last layer, where we define the element-wise clipped ReLU
as

�ReLU(x)� =

8
><

>:

0, if x� < 0,

x�, if 0  x� < 1,

1, if x� � 1.

(3.41)

Then, the regression function NN that estimates Y⇤
h as in (3.40), is given by

NN
�
mh�1,hh�1,Y⇤

h�1

�
= �ReLU

�
mh�1,hh�1,Y⇤

h�1

�
. (3.42)
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3.4.2 Network Architecture and Training Procedure

Network Architecture

The mapping from (3.40) that aims to model complex tra�c scenarios requires to
recognize deep and non-linear dependencies between the input and output variables.
Therefore, the regression network benefits from a deep architecture where every
additional layer introduces new non-linearities with its respective activation function.

X h

Y⇤
h

512 tanhFC

512 tanhFC

512 tanhFC

512BiLSTM

512 tanhFC

512 tanhFC

11200 clipped ReLUFC

11200Input

Figure 3.5: Architecture of the BiLSTM network used to predict the future of
dynamic tra�c scenarios as a regression task. Both the input X h and the output
Y⇤

h at prediction step h are each a vector that contains 11200 variables. Every layer
is represented as a container with at least two elements: the layer type in cyan,
the output size in purple, and optionally the activation function in yellow. The
width of the container varies depending on the number of units on the layer and the
activations are propagated between the layers, as depicted by the vertical arrows.
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The neural network consists of a series of stacked FC and LSTM layers. Data is
given to the model via an input layer of size 11200, which is the amount of grid
cells in the later evaluation setup. In this way, the value at every cell of the input
OG is treated as an independent variable. The input layer is followed by three
consecutive FC layers, each with 512 activations and the hyperbolic tangent tanh as
activation function. These layers compress the input data into a low dimensional
feature vector and extract patterns in the sample. Next, instead of the standard
LSTM cell, we use a Bidirectional LSTM (BiLSTM) of size 512 at the network
core, as suggested in [Neu17]. The BiLSTM is a common variant of the LSTM for
sequential learning tasks that allows the recurrent network to learn dependencies
from the entire sequence at every time step. In essence, a BiLSTM cell consists
of two LSTMs of the same size, one that processes the input data in the forward
direction, and another that processes the data in the backwards direction. In turn,
BiLSTMs dispose of more temporal context compared to the LSTM and can improve
the prediction capabilities in RNN networks. Due to the internal structure of the
BiLSTM, the cell memory mh 2 R1024 and the hidden state hh 2 R1024 at a step h
have double the size of the internal states of a standard LSTM. Hereafter, two further
FC layers follow the BiLSTM, again with 512 activations each and the hyperbolic
tangent tanh activation function. A final FC layer produces 11200 outputs, each
corresponding to the predicted value at every cell from the output OG. Because
the OGs employed during training only contain binary values, the outputs of the
network are restricted to the interval [0, 1] with the clipped ReLU activation function
from (3.41). It is not of interest to directly classify the output values into binary
numbers, as the values in the interval (0, 1) can be used later to derive a probabilistic
model of the future environment. The general architecture of the regression model is
depicted in Figure 3.5.

Training Procedure

Just like the training procedure used for the classification network, the regression
network also uses the Adam [KB14] solver. In this case, the initial learning rate is
set to 0.0015 and multiplied with 0.2 every 125 epochs. The mini-batch size is 64
and the training process is concluded whenever the validation accuracy, measured
every 10 iterations, stops to improve for 5 consecutive times.
As the loss function, the half-mean-squared-error loss Lregr for regression tasks from
the Deep Learning Toolbox

TM

is employed, which is given by

Lregr =
1

2M train

MtrainX

m=1

RX

r=1

(Ym,r �Y⇤
m,r)

2, (3.43)

with the observation sequence length M train during training, as defined in (3.22), the
number of output responses R (in this case, R = 11200), and the r-th responses of
both the ground truth label Ym,r and the prediction output Y⇤

m,r at observation
time step m.



3.4. MULTI-OUTPUT REGRESSION 37

The exact network structure, as well as the network and training hyperparameters,
have been specified with the same automated thorough sweep approach as for the
classification model.

3.4.3 Probability Grid Derivation

A simplified version of the approach to derive a PG from the categorical distribution
in Section 3.3.4 can be re-used to introduce a probabilistic prediction uncertainty to
the deterministic outputs of the regression model. In this discussion, we consider the
deterministic network output Y⇤

h as a PG candidate Ph at step h:

Ph = Y⇤
h. (3.44)
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(a) Artificial regression output Y⇤
h, reshaped as a grid map. The grid

cells occupied by a TV hold a value close to 1, unoccupied cells are
assigned a value close to 0.
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(b) Gaussian filtering to model prediction uncertainty. The variance
measures �2

x = 1 and �2
y = 1.5 are used exemplarily.

Figure 3.6: The qualitative e↵ect of the Gaussian filtering on a regression output.

Since Y⇤
h already models the shapes of the objects on the grid, there is no need to

apply an additional box linear filter as in Section 3.3.4. Neither is it necessary to
aggregate di↵erent sequences for di↵erent prediction hypotheses of each TV, as Y⇤

h

already models all tra�c participants (excluding the EV) jointly. It is su�cient to
only apply the probabilistic convolutional filter to introduce the prediction uncertainty
to the PG. Any arbitrary probability distribution can be used to model the prediction
uncertainty. Again, we propose the method with a Gaussian filter defined analogously
to (3.30), taking into regard (3.31) and (3.32) as well. The standard deviations �x

and �y can also be chosen as an arbitrary prediction error measure, but a di↵erent
one as in the classification task due to the di↵erent format of the network output.
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3.4.4 Evaluation and Discussion

Training Results

We implement and train the LSTM network as introduced in Section 3.4.2 with the
Deep Learning Toolbox

TM

in MATLAB R�. The initialization and prediction lengths
are again chosen as M = 20 and N = 20 with the sampling and prediction time
T = 0.2 s. The training data is obtained as described in Section 3.2.2.
After the training process, which concluded after 80 iterations, we evaluate the
prediction accuracy of the neural network measuring the Root-Mean-Squared Error
(RMSE) between the outputs and the targets. In the following, we only use the
subscript h for simplicity. Given a network output Y⇤

h and the corresponding ground
truth label Yh, the RMSEh at a step h is given by

RMSEh =

vuut 1

R

RX

r=1

�
y⇤h,r � yh,r

�2
, (3.45)

where R = 11200 is the number of output responses and cells on the grid, and
y⇤h,r 2 Y⇤

h and yh,r 2 Yh are the r-th elements of Y⇤
h and Yh respectively. We

additionally define the X-RMSEh and Y-RMSEh in x and y directions, where we use
the sums of the square errors along the columns and rows respectively

X-RMSEh =

vuut 1

nrow

nrowX

i=1

ncolX

j=1

�
y⇤h,i,j � yh,i,j

�2
, (3.46a)

Y-RMSEh =

vuut 1

ncol

nrowX

i=1

ncolX

j=1

�
y⇤h,i,j � yh,i,j

�2
, (3.46b)

where nrow = 400 and ncol = 28 are abbreviations for the number of rows and
columns in the grid G, and y⇤h,i,j 2 Y⇤

h and yh,i,j 2 Yh refer to the i-th row and j-th
column in Y⇤

h and Yh, reshaped as matrices with the shape of G. As the presented
RMSE measures are only computed for each pair formed by an output Y⇤

h and the
corresponding target Yh at a step h, we measure the mean and standard deviation of
the di↵erent RMSE measures on all samples in the test data set for every prediction
step h = 1, . . . , N , which can be found in Table 3.2.
Even though they do not describe the deviation in the predicted TV motion as the
error measures used for the classification model, the mean values of X-RMSEh and
Y-RMSEh still o↵er a measure of the expected amount of deviation of the predicted
values in the OG from the target values along each spatial dimension. Therefore,
we directly use the mean values of the X-RMSEh and the Y-RMSEh as standard
deviations �x and �y for the probability distribution used in the blurring filter that
models uncertainty in the PG.
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Discussion

In Section 3.4, we have presented a multi-output regression LSTM network that
generates multiple steps of forecasts in the format of an OG with a long-term
prediction horizon. The approach to find a probabilistic map of the environment,
previously introduced for the classification model, can also be applied to the regression
output for the later utilization in the grid-based SMPC strategy for automated
driving.
The main disadvantage of the prediction model is that the probabilistic nature of
the road environment is not regarded and a universe with deterministic outcomes is
assumed. Thus, the network is unable to produce multimodal outputs. Besides, the
prediction error increases over the time, not only due to the error in the forecasted
motion of the TVs, but also because the shapes of the vehicles become less exact
and appear with blurred edges. Additionally, prediction uncertainty is propagated
through the prediction steps, where noise in previous forecasts may lead to new
objects appearing on the OG. Moreover, the error measure chosen to evaluate the
deviation of the predictions in each spatial dimension does not describe accurately
the uncertainty in the predicted TV motion, as it is independent of the number
of vehicles in the environment. Also, we have a low degree of control during the
derivation of the PG from the prediction output, since the probabilistic uncertainty
can only be modeled for the entire environment, and not for each TV individually.
Despite the exposed shortcomings of the regression model, the presented predictor
exhibits a number of significant strengths that can complement the classification
model. First, the regression network is given information about all the dynamic
objects within the detection range, which enables the model to understand vehicle
interaction and group behavior patterns. Furthermore, the predictor can be trained
to forecast TVs entering or leaving the space in the local environment of the EV.
On another note, the prediction model only requires one forward pass through the
network at every prediction step, independently of the number of objects on the grid,
which makes the computational cost more consistent.
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Chapter 4

Grid-Based Stochastic Model
Predictive Control

In this chapter, the grid-based SMPC method for trajectory planning of autonomous
vehicles is described. Section 4.1 introduces the system model and constraint sets
for the EV, Section 4.2 presents the process to derive a deterministic reformulation
of the chance constraint based on the PGs extracted in the previous chapter. Next,
Section 4.3 we evaluate the overall method and discuss the results. To improve
readability, only one of the subscripts k (referring to the sampling step) or h
(designating the prediction step) is given where needed, as long as the other is
not relevant to the discussion.

4.1 System Models

Modeling the EV as a point of mass at its center of gravity, a linear, discrete-time
double integrator dynamic system model can be obtained:

⇠EVk+1 = A⇠EVk +Buk, (4.1)

where the state and control vectors ⇠EVk and uk read as

⇠EVk =
⇥
xEV
k , vEVx,k , y

EV
k , vEVy,k

⇤>
, uk = [ax,k, ay,k]

> , (4.2)

with xEV
k and yEVk as the x and y positions at time step k, and vEVx,k and vEVy,k together

with ax,k and ay,k as the velocity and acceleration in x and y direction respectively.
The system matrices A and B are given by

A =

2

664

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

3

775 , B =

2

664

1
2T

2 0
T 0
0 1

2T
2

0 T

3

775 , (4.3)
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where T is the sampling time. In contrast to the general SMPC definition, no system
disturbance is considered in the EV system model, because uncertainties occur mostly
in the surrounding environment.
Both the states and the inputs need to satisfy constraints at all time steps. These
constraints are

⇠k 2
�
⌅road
k \ ⌅safe

k

�
, umin  uk  umax, (4.4)

where ⌅road includes road and physical limitations, and ⌅safe regards other vehicles to
avoid accidents. The restrictions applied to uk are bound to the vehicle specifications.
In short, the constraints in (4.4) are encapsulated in

⇠k 2 ⌅k, uk 2 Uk. (4.5)

4.2 Modified Stochastic Model Predictive Control

In this section, we provide an overview about the routine developed in [BDP+20]
to obtain a deterministic constraint set from the chance constraints to reduce the
computational complexity of the SMPC framework. Here, we assume an already
given PG, as described in Sections 3.3.4 and 3.4.3.

4.2.1 Chance Constraint Reformulation

After the computation of the PG to stochastically model the territory around the EV
at prediction step h, the SMPC chance constraint can be reformulated as a linear
constraint. We contemplate the following chance constraint on the set of states ⌅safe

h ,
which was introduced in (4.4) to avoid impacts with road obstacles:

Pr
�
⇠EVh 2 ⌅safe

h

�
. (4.6)

First, a threshold pth is applied to the grid P to turn it into a Binary Grid (BG),

represented by B 2 R
◆x
ax

⇥ ◆y
ay , of binary values

bi,j =

(
1, if pi,j � pth,

0, otherwise.
(4.7)

The threshold parameter pth is tunable and allows to adjust the risk aversion of the
controller: similarly to the probability level �, the control behavior becomes more
conservative the higher the risk factor pth. In essence, the BG divides the space
into two mutually exclusive and collectively exhaustive subsets of inadmissible or
occupied cells, where bi,j = 1, and admissible or free cells, which all hold the value 0.
This way, the chance constraint (4.6) can be transformed into a hard state constraint

⇠EVh 2 ⌅adm
h , (4.8)
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where ⌅adm
h contains all admissible cells in B and symbolizes the admissible space.

Next, a linear description of (4.8) can be found to further improve the performance of
the SMPC scheme. In this sense, a method that relies on Bresenham’s line algorithm
is proposed in [BDP+20] to find the maximal convex subset within the admissible
space. Consequently, the convex space extracted from ⌅adm can be expressed with a
linear inequality, given by

Asafe
h ⇠EVh  bsafeh , (4.9)

with Asafe
h 2 R4⇥4 and bsafeh 2 R4. The resulting constraint is tractable and reduces

the computational cost of the SMPC trajectory planning method significantly, as
the described procedure is repeated at every prediction step h.

4.2.2 Modified Optimal Control Problem

As an outcome of the previous steps, the SMPC optimal control problem is trans-
formed to a standard MPC problem without chance constraints:

U ⇤ = argmin
U

N�1X

h=0

⇣���⇠EVh
��2
Q
+
��uEV

h

��2
R

⌘
+
���⇠EVN

��2
S

(4.10a)

s.t. ⇠EV0 = ⇠̂EVk , (4.10b)

⇠EVh+1 = A⇠EVh +BuEV
h ,h 2 N, (4.10c)

⇠TV
0 = ⇠̂TV

k , (4.10d)

uEV
h 2 Uh, h = 0, . . . , N � 1, (4.10e)

⇠EVh 2 ⌅h, h = 1, . . . , N, (4.10f)

Asafe
h ⇠EVh  bsafeh , h = 1, . . . , N, (4.10g)

with the optimal control sequence U ⇤ =
⇥
u⇤

0, . . . ,u
⇤
N�1

⇤
, which minimizes the cost

function over the control input U = [u0, . . . ,uN�1], the operator kzk2W = z>Wz
as the squared norm of z w.r.t. metric W , the di↵erence �⇠EVh = ⇠EVh � ⇠EVh,ref and

the EV reference ⇠EVh,ref, the weighing matrices Q,S 2 R4⇥4 and R 2 R2⇥2, the state

estimations ⇠̂EVk and ⇠̂TV
k at sampling step k, the system matrices A and B given

by (4.3), and the constraint sets Uh and ⌅h according to (4.5). The TV prediction
model, which can be chosen either as the classification or the regression model, is
implicitly contained in constraint (4.10g), which is derived from state set ⌅safe

h for
collision avoidance.

4.3 Evaluation

In this section, we evaluate the grid-based SMPC algorithm for trajectory planning in
autonomous driving with the extended data-driven grid prediction. First, a simulation
framework is presented in Section 4.3.1. Next, some qualitative simulation results
are analyzed in Section 4.3.2 and the general approach is discussed in Section 4.3.3.
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4.3.1 Simulation Framework

Multi-step grid prediction

Environment EstimationGrid-Based SMPC

Simulation

PG sequence
{P1, . . . ,PN}

Evidence sequence
{X 1, . . . ,XM}

Extract BG

Compute SMPC trajectory
⇠EVk,h, h = 1, . . . , N Next measurement k + 1

Dynamic object tracking

Apply EV control
⇠EVk+1 = ⇠EVk,1 + wk

Interactions in SUMO
⇠TV,⌧
k+1 , ⌧ = 1, . . . T

Classification
PG

derivation

RegressionPG
derivation

Figure 4.1: Simulation framework outline. Starting at the container at the bottom,
a simulation of a tra�c scenario is conducted in SUMO, where the EV is controlled
externally. At each simulation step, a sequence of past observations is constructed in
the environment estimation module (container to the right) from the information
in the simulation. In the upper container, the multi-step grid prediction module
produces a sequence of PGs either with a classification or a regression network. The
PGs are then used in the grid-based SMPC (container to the left) to calculate the
optimal trajectory and generate the optimal prediction sequence.

The proposed grid-based SMPC method with an integrated deep learning grid
prediction module, which can either be executed as a classification or a regression
network, is evaluated in a simulation framework developed in MATLAB R� and SUMO.
A simulation of a road scenario is conducted in SUMO, where the interactions between
the tra�c participants can be evaluated step-wise at a microscopic level, meaning
that the dynamics of every single vehicle are modeled individually [LBBW+18]. The
EV is controlled externally from a MATLAB R� client, where SUMO is run as a server.
The state ⇠EVk+1 of the EV for the next simulation step k+1 is computed according to

⇠EVk+1 = ⇠EVk,1 +wk, (4.11)

where ⇠EVk,1 is the first predicted state of the EV at simulation step k for prediction
step h = 1 and wk 2 R4, with wk ⇠ N (0,⌃w), is a normally distributed, zero-mean
random variable with covariance matrix ⌃w, which acts as a stochastic disturbance
that introduces model uncertainty. The state ⇠EVk,1 is the result of applying the first
control action u⇤

0 from the optimal control sequence U ⇤, as computed in (4.10a), to
the EV system model from (4.1)

⇠EVk,1 = A⇠EVk,0 +BuEV
k , (4.12)
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whereas ⇠EVk,0 is given by (4.10b). Then, the EV state ⇠EVk+1 for simulation step k + 1
is updated in SUMO and the tra�c simulation advances one step to simulation
instance k + 1. There, SUMO produces the states ⇠TV,⌧

k+1 of all ⌧ = 1, . . . T TVs in
the simulation scenario, simulating real-life driving behaviors and interactions.
Next, the measurement vectors z⌧,k from (3.3) are constructed directly from the
simulation data, imitating the environment estimation and dynamic object tracking
approach from [STW17]. From the set Tenv that describes the local environment of
the EV, as defined in (3.5), the observation sequence {X 1, . . . ,XM} is constructed
to be used as evidence both in the classification and in the regression prediction
modules.
Subsequently, one of the two presented multi-step grid prediction methods is used to
predict the future motion of the dynamic objects in the surroundings of the EV for
prediction steps h = 1, . . . , N . The PG sequence {P1, . . . ,PN} is derived from the
forecasts to be used in the grid-based SMPC trajectory planning scheme.
Based on the PGs Ph at every step h, the chance constraints are reformulated with
the help of the BG Bh for e�cient trajectory planning, yielding the predicted state
⇠EVk,h and the optimal control sequence U ⇤.

4.3.2 Experiment

In this Section, we design a simulation of a driving scenario to qualitatively analyze
the grid-based SMPC trajectory planner exemplarily with the regression prediction
model from Section 3.4. As a probability threshold pth to derive the BG, we use the
value 0.1, which is a relatively low risk parameter, given that the values in the PG
derived from the regression model are found in the interval [0, 1]. The simulated
environment consists of the same two-lane highway as used for the data collection in
Section 3.2.2.
The initial simulation setup is formed by an EV with the state ⇠EV0 and three TVs
with the states ⇠TV,1

0 , ⇠TV,2
0 , and ⇠TV,3

0 , which are

⇠EV0 = [80m, 28m/s, 5.25m, 0m/s]> , (4.13a)

⇠TV,1
0 = [110m, 27m/s, 5.25m, 0m/s]> , (4.13b)

⇠TV,2
0 = [150m, 28m/s, 5.25m, 0m/s]> , (4.13c)

⇠TV,3
0 = [140m, 24m/s, 1.75m, 0m/s]> , (4.13d)

at the initial sampling step k = 0. The lateral positions at 5.25m and 1.75m
correspond to the centers of the left and right lanes respectively. The EV is given a
reference velocity of 26m/s. Here, we present the qualitative simulation results and
visualize two fragments, which are depicted in Figure 4.2.
During the first simulation excerpt, which encompasses the time steps k = 0, . . . , 20
and is shown in Figure 4.2a, the EV performs a lane change from the left to the
right lane. The EV is initially placed behind a TV (with index 1) with a gap of 30m.
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(a) Simulation fragment for time steps k = 0, . . . , 20. The EV switches from the left to the
right lane while the TVs stay on their initial lanes.

(b) Simulation fragment for time steps k = 91, . . . , 112. The EV moves from the right to
the left and starts an overtaking maneuver.

Figure 4.2: An EV (blue) interacts in a tra�c scenario with three TVs (TV with
index 1 is red, TV with index 2 is green, and TV with index 3 is purple). The starting
positions are colored dark, and only every second simulation step is displayed in a
lighter tone. Vehicles advance in positive x direction.

Therefore, the EV detects a possible collision within the prediction horizon with TV
1 and moves to the free lane, where obstacles are more distant.
In the time between the first and the second fragment shown, the TVs 1 and 2
overtake TV 3 and leave free space in the left lane. On the other side, the EV stays
on the same lane behind TV 3 and the gap between the two vehicles narrows.
Then, during the second simulation section, which ranges from time steps k = 91 to
k = 112 and is illustrated in Figure 4.2b, the EV is traveling at its reference velocity,
which is faster than the velocity of the TV 3. Thus, the EV switches back to the left
lane and starts an overtaking maneuver to pass the slower TV 3.

4.3.3 Discussion

In Chapter 4, we introduced the grid-based SMPC strategy for trajectory planning
in automated driving. Then, we presented a simulation framework to test and
evaluate the control achieved by the overall method using the grid prediction module
proposed in Chapter 3. In a highway scenario with four total participants, we
have demonstrated that the approach can work as expected with a low probability
threshold pth to avoid risk. The chosen threshold, which does not truly describe a
real probability, causes a conservative behavior of the controller.



47

Chapter 5

Conclusion

In this work, we presented two data-driven grid prediction models to produce multiple
steps of forecasts about the future motion of external tra�c participants with a
long-term horizon. Further, we proposed a general approach to process the prediction
outputs into a PG that is employed in the grid-based SMPC scheme to perform
e�cient trajectory planning for an ego vehicle. The overall method is able to handle
an increased number of dynamic objects on the road, as demonstrated in a simulation
with four vehicles. Additionally, the future motion of external objects can be modeled
with an arbitrary probability distribution to account for the stochastic conduct of
road agents.
The first prediction model introduced in this work as a classification network produces
a probability distribution over the discretized environment, describing the likelihood
of the presence of a point-mass object. Furthermore, the model operates on every
dynamic object individually and considers multiple possible outcomes. The second
prediction model, which is a regression network, directly generates a forecast of
the complete surrounding scene by considering a deterministic universe. Both of
the proposed alternatives show strengths and shortcomings that can complement
each other. Nevertheless, the prediction models still have potential to improve and
increase the accuracy. Neural networks often benefit from deep architectures and
convolutional layers to better capture spatial patterns and relashionships. Also,
convolutional LSTMs improve the used FC-LSTMs in recognizing spatio-temporal
dependencies. Moreover, the recurrent encoder-decoder structure has also shown an
excellent performance in sequence-to-sequence tasks.
For future work, it is still of interest to evaluate the scalability of the proposed
methodology in urban driving scenarios, where the interactions between the diverse
agents in the environment play a more important role. In addition, it is crucial to
ensure safety in automated driving, hence, measures to guarantee safety may be key
in the future development of the framework. Also, the trajectory planning strategy
could be tested in real-life situations and be extended to di↵erent applications of
intelligent agents, such as robotics or navigation systems in varying environments,
i.e., air and waterborne.
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[HBD17] Stefan Hörmann, Martin Bach, and Klaus Dietmayer. Dynamic occu-
pancy grid prediction for urban autonomous driving: A deep learning
approach with fully automatic labeling. Computing Research Repository

(CoRR), 2017.
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