Coupling Grid-based Stochastic Model Predictive
Control with Recurrent Neural Networks for
Occupancy Grid Prediction

Diego Marti Monsé and Paul Delseith
Department of Electrical and Computer Engineering, Chair of Automatic Control Engineering (LSR)
Technical University of Munich
Munich, Germany
{diego.marti; paul.delseith} @tum.de

Abstract—Recurrent Neural Networks have proven a high
ability to predict the future development of dynamic traffic
scenarios. For this purpose, grid-based representations, such
as Occupancy Grids, are often used to describe the driving
environment around an Ego Vehicle. Similarly, Occupancy Grids
are also the basis of a number of trajectory planning algorithms
for autonomous driving. In this work, we propose a general
framework to combine the efficient grid-based Stochastic Model
Predictive Control planner with a deep learning grid predictor.
We then demonstrate the effectiveness of the approach with two
conceptually different Recurrent Neural Networks in simulations
of driving scenarios. Furthermore, we suggest a variety of
parameters to achieve the desired driving behavior in different
situations.

Index Terms—Stochastic Model Predictive Control, Occupancy
Grids, Recurrent Neural Networks

I. INTRODUCTION

One of the most challenging, yet crucial, tasks of an
autonomous vehicle is to predict the future motion of external
road users. Forecasting future traffic events not only increases
safety by directly helping to avoid obstacles on the road, but
also by facilitating smoother driving paths and thus reducing
the forces on the vehicle. In turn, less aggressive accelerations
contribute to decreasing energy consumption, tire deteriora-
tion, and acoustic contamination, while increasing passenger
comfort. Thus, an autonomous vehicle has to understand the
scene context and analyze behavioral and motion patterns of
other traffic participants to draw hypotheses about the future.
However, traffic scenarios typically involve a high degree of
uncertainty, due to the deep probabilistic dependencies of traf-
fic events, an almost unlimited amount of possible outcomes,
and the irrationality introduced by humans. Hence, trajectory
planning algorithms need to cope with the uncertainty inherent
to driving environments.

Model Predictive Control (MPC) is a trajectory planning
algorithm for automated driving, which repeatedly solves an
open-loop optimal control problem at every sampling instant
in a receeding horizon manner. With the help of a dynamic
system model, a cost function with state and input constraints
is minimized over a sequence of control inputs that extends
from the current time step to the control horizon. Even

though only the first control action of the sequence is applied,
making predictions about future time steps allows to anticipate
events and avoid overshoot. As the control process advances,
updated measurements — acting as a feedback to the MPC
— are considered and the horizon recedes. Stochastic Model
Predictive Control (SMPC) is an optimal control method that
introduces chance constraints to standard MPC to handle the
probabilistic incidence of uncertainties. The SMPC approach
has proven its effectiveness in planning the trajectories of
automated vehicles as it ensures that the risk of collision
remains below an adjustable risk parameter 8 [1], [2], [3].
Nevertheless, the chance constraints significantly augment the
computational complexity of the optimal control problem.
Therefore, grid-based SMPC has been introduced in [3] to
reduce the time cost of the planning algorithm by leveraging
on Occupancy Grids (OGs). An OG maps the perceived envi-
ronment around the controlled entity, which is the Ego Vehicle
(EV), into a grid where each cell is assigned an occupancy
probability. Additionally, a method is described in [4] to derive
object tracks of dynamic road obstacles based on evidential
OGs. These object tracks allow a concise description of all
dynamic agents within the detection range of the EV, which
we denominate as the Target Vehicles (TVs). In practice, any
dynamic obstacle on the road can be a TV. However, we
restrict the definition solely to vehicles for simplicity.

In SMPC and its variants, the future states of the EV
are predicted as the output of a system model, given the
future system inputs that are the optimization variable of
the stochastic optimization problem. In the previous works
of [1], [2], [3], the motion of the TVs is forecast in a similar
way, whereas the inputs to the respective TV system models
are estimated from probabilistic models and hand-crafted
heuristics. However, due to the multimodal nature of driving
scenarios and the probabilistic dependencies of traffic events,
such prediction models are not able to scale and generalize to
complex and diverse scenarios. Conversely, Recurrent Neural
Networks (RNNs) have shown an outstanding performance to
forecast the future development of grid driving environments
by inference from previous measurements [5], [6], [7].

For instance, a difference learning RNN model is presented

in [7] that shows a high degree of accuracy. In addition, the
convolutional network to forecast future OGs in urban driving
scenarios proposed in [8] is outperformed by the authors with
an RNN network in [6], which takes OGs sequentially as
inputs and produces separate static and dynamic predictions.
A probabilistic RNN model to predict future vehicle positions
is introduced in [5]. In contrast to the previously discussed
works, the data used in the model of [5] is not in the format
of OGs, but as state vectors that describe the motion of
individual vehicles. However, the network is provided with
little contextual information about other traffic participants
for the inference, which severly limits the scalability of the
approach, especially when interactions between vehicles play
an important role.

In this work, we propose a framework to couple grid-
based SMPC with RNN-based predictions of OGs. In [3], the
stochastic uncertainty is considered in the TV vehicle model
used for inference. We substitute the TV system model by
different RNN prediction models and suggest corresponding
methodologies to account for the prediction uncertainty in the
SMPC Optimal Control Problem (OCP).

A. Report structure

The remainder of this work is structured as follows: in
Section II, we first explore the preliminaries, then we present
the EV system model used in the OCP and the later simulation,
and finally we introduce grid-based SMPC. Next, Section III
opens with the characteristics of the training data used to train
the prediction models, followed by the two grid prediction
models explored in this work, and the method is completed
with the procedure to derive a linear constraint from the
predicted OGs. In Section III, we explain the simulation
setup and the driving scenario used for evaluation, and then
we analyze and discuss the results. Lastly, Section V is the
conclusion.

II. PROBLEM SETUP

In this section, we briefly present OGs and a special case of
the RNN as the preliminaries to the rest of the report. Then,
we introduce the EV system model and the grid-based SMPC
control method, where we give a low-level description of the
problem setup.

A. Preliminaries

1) Occupancy Grid: An OG is a two-dimensional, space-
discrete representation of the local environment that provides
a rectangular shaped bird’s-eye view of the setting with
length le,y and width wepy. :Fhe surrounding of the EV is
divided into a grid G € R war of cells cj € G of
length [and width wee, where the subscripts x and y
denote the two spatial dimensions, and ¢ and j are indices.
Additionally, the fractions fﬁ and % are required to be
integers. The size of the cells, which can be seen as the
resolution of the grid, poses a trade-off between accuracy
and computational cost. Each of the cells is assigned an
occupancy value that approximates the posterior probability

of the presence of an object. Different algorithmic approaches
exist to estimate the occupancy values, typically as Bayesian
occupancy estimations of inexact fused sensor measurements.
In addition, variants of the standard OG may include diverse
channels to code supplementary information, such as dynamic
estimates.

2) Long Short-Term Memory: The RNN is an artificial
neural network that is able to learn to process sequential data,
such as time series data [9]. At every time step k, the hidden
state hj of the standard RNN cell is fed back to its input
in the following time step k + 1. In this way, information is
carried on sequentially through time and the output of the cell
is influenced by the previous events. However, the RNN suffers
from the vanishing gradient problem during training, which
prevents the network from learning long-term dependencies in
the input sequence.

A 4

hy

Fig. 1: Internal structure of a standard LSTM cell. Opera-
tors are colored yellow, internal functions purple, activation
functions blue, and external inputs and outputs cyan. Weight
matrices and bias vectors have been left out.

To solve this issue, the Long Short-Term Memory (LSTM)
complements the standard RNN with an additional cell mem-
ory ¢ and a gating mechanism that controls the information
flow within the cell according to the following recursive
equations:

fk =0 (thhk71 + sz:ck + bf) , (1a)
iy =0 (Winhi—1 + Wiz +b;), (1b)
o, =0 (Wohhk'—l + Wexi + bo) , (1c)
¢, = tanh (W phy 1 + Wz, + be), (1d)
¢k = fr ©cp_1+ 1 Ocy, (le)

hk- =0r ©® tanh (Ck), (1f)

where the operator © denotes the Hadamard product (i.e.,
the element-wise multiplication of vectors), the hyperbolic tan-
gent tanh : R” — (—1,1)" is applied element-wise, and the
element-wise sigmoid logistic function oigmeia : R” — (0,1)"
is used as an activation function:

1

= 2
T @)

Usigmoid (v)j

for j = 1,...,n and v = [v1,...,v,]" € R". Fur-
thermore, the input x; € RS at time step k£ is a vector
of 4 input features, the bias vectors bs,b;,b,,b. € R”
have length 7, and Wy, Wi, Wop, W, € R and
Wiee, Win, Woe, Wep € R7%9 are weight matrices. The cell
memory ci € R at time step £ is updated in (le) by applying
the forget gate f,, € (0,1)" from (la) to the previous cell
memory c¢,_1, and the input gate i, € (0,1)"” from (1b) to
the new cell memory candidate ¢, € (—1,1)7 from (1d). The
forget gate decides about the information that will no longer
be tracked in the cell memory, while the input gate chooses
and scales the elements of the new cell memory candidate
that will be taken over. Next, the hidden state hy € (—1,1)"
at time step k is obtained in (1f) by employing the output
gate oy € (0,1)" from (1c) on the updated cell memory, with
its range limited to (—1,1)"” by the element-wise hyperbolic
tangent. The flow of information within the LSTM cell is
represented in Figure 1.

Overall, the LSTM cell has an increased memory compared
to the standard RNN cell. In consequence, LSTMs are often
used as the core block in long-term deep learning prediction
models, which operate in a sequence-to-sequence fashion.

B. Ego Vehicle Model

In this work, we employ a kinematic bicycle model, as
presented in [2], to describe the dynamics of the EV. The
nonlinear system is given by

e = £ (6" u), 3)

where ¢ = [z,v,, ’(/J]T represents the state vector of the
EV and w = [6,a] ' is the input vector. The state consists of
the longitudinal position z, the velocity v, the lateral position
y, and the yaw angle 1) with respect to the road. Likewise,
the input vector is composed by the steering angle § at the
front left and right wheels, and the acceleration a. As the
OCP solved in MPC is discrete-time, we additionally discretize
the system equations by a Forward Euler scheme with the
sampling time 7', which yields the system difference equations

’UkT
= _— S 4
Tht1 = Tp + 7 erer (wn) *° (Vr + an), (4a)
Vi1 = Uk + a1, (4b)
Yk+1 = Yk + opTsin (Y + ag), (4c)

. . T
Vi1 = Vi + % sin (ay) — % cos (Yr + o) (4d)

l
o = arctan ~tan (03) |, (de)
£+ lr
. . EV T .
with the discrete states &' = [zk, Uk, Yk, ¥x] and inputs

ug = [0k, ak]T at prediction step k, and the distances [, and It
from the center of gravity of the vehicle to the rear and front
axles, respectively. The discretized EV prediction model in (4)
is encapsulated in &%, = f (&', uk).

At all prediction steps k, the input vector is subject to
constraints

Umin S U S Umax (5)

with Ui, = [(SMmamin]—r and Uy = [5max7amax]—r. These
boundaries on the steering angle and the acceleration are de-
termined by vehicle parameters. Similarly, the lateral position
and the velocity of the EV are also restricted by the road and
speed limits

(6a)
(6b)

Ymin < Yk < Ymax,
Umin S Vg § Umax -

Finally, the input and state constraints (5) and (6) are
summarized in the set of admissible inputs I/ and the set of
admissible states = at prediction step k.

C. Grid-based Stochastic Model Predictive Control

The SMPC OCP considers a chance constraint to allow
a certain probability level of constraint violation. Since the
traffic environment around the EV is highly uncertain, it has
proven effective to model this stochastic uncertainty with
SMPC chance constraints [1]. Nevertheless, chance constraints
introduce an additional computational complexity that makes
the OCP intractable. Therefore, grid-based SMPC with OGs
was proposed in [3] to transform chance constraints into a
linear, deterministic constraint that reduces the computational
cost of the method. Effectively, the OCP solved in grid-based
SMPC is thus a standard MPC OCP.

We initialize the OCP with the estimated EV state &5V
at sampling step t, which is subject to sensor noise in the
measurements

"EV = ¢EV 4 BV,)

where w®Y ~ N(0,%EY) is a normally distributed, zero-
mean random variable with covariance matrix XY, For sim-
plicity, in the remainder of this work, only the index &,
corresponding to the prediction step, is given unless explicitly
indicated otherwise.

With all the above considerations, the grid-based SMPC
OCP is given by

N-1
U* = arg min > un,we) + T (€5Y) (Ba)
k=0
st €8V = €8V (8b)
=1 (& w), keEN, (8¢)
&' € Ex, k=1,...,N, (8d)
uy € Uy, k=0,...,N—1, (8e)
ARV < b, h=1,...,N, (8f)
with the optimal control sequence U™ = [ug, ..., u}_,],

which minimizes the cost function over the control input
U = [ug,...,un_1], the prediction step k, the prediction
horizon N € N, the estimated EV state @:V at sampling step
t, the system dynamics f, the state and input constraint sets

= and U respectively, and the safe space matrix A and

vector b**™. The cost function is made up of the stage cost
1(&Y, ur—1,u;) and the terminal cost J; (€}"), which are
given by
L&Y up—1,ur) = HAEEVHZ + lurl g + [Aulz. (9a)
Je (68) = | AgRlg - (9b)
with the operator ||z||3, = 2" Wz as the squared norm
of z w.r.t. metric W, the deviation from the reference state
ALY = €Y — ngef with the EV reference ﬁxef, the input
difference Aup = up — up—1, and the weighting matrices
Q c R*™* and R, S € R?*2. For the input difference Auy,
the il%put ug for prediction step k£ = 0 is initialized as ug =
[0,0] .

Constraint (8f) describes the maximal convex subset around
the EV within the space of admissible grid cells, i.e., the
grid cells that are believed to be free of obstacles for a given
prediction step k. Consequently, all information about external
road obstacles and dynamic objects considered in the OCP is
included in (8f). Hence, our goal is to develop multi-step and
long-term prediction models to derive the admissible space at
every prediction step k as the linear inequality constraint (8f).
Given the OCP (8), a total of N predictions with a sampling
time 7' are needed. Because of their previous success in OG
prediction tasks, we explore RNN-based forecasting models
with the same prediction horizon N and sampling time 7 as
the grid-based SMPC framework.

III. METHOD

This section consists of three parts. First, we present the
training data set and the data acquisition method from mi-
croscopic traffic simulations. Second, we build two different
RNN-based multi-step forecasting models and train them to
predict the sequence of N future OGs, which describes the
future motion of all TVs in the surroundings of the EV. Third,
we regard the stochastic prediction uncertainty to derive the
admissible space as the linear inequality constraint (8f).

All prediction models treat the forecasting problem as a
sequence-to-sequence prediction task. The models are initial-
ized with the sequence of previous M observations, containing
information of the TVs in the local environment of the EV in
the M last measurement steps. We choose the initialization
length M to be equal to the prediction horizon N, which is
set to 20 (i.e., M = N = 20). Similarly, we also use the
same sampling time 7" for the observation sequence as for the
prediction sequence, which is established as 7' = 0.2s.

A. Training Data

We generate training data for the deep learning prediction
models by sampling traffic simulations in the microscopic
traffic simulator SUMO (Simulation of Urban MObility) [10],
which models individual vehicles and their interactions at a
microscopic level in a space-continuous, time-discrete setting.
The simulation scenarios are highly customizable and different

dynamic, behavioral, and probabilistic models are available to
configure the environment and traffic.

We record 62 independent traffic scenarios that take place
in the same two-lane highway setting as the later simulation
setup for the evaluation in Section IV, where the parameters
of the road layout can be found. The registered scenarios
vary in the amount, type, and initial conditions of traffic
participants. Overall, the scenarios are intended to imitate
and cover most of the situations that can be observed in
real driving circumstances, such as different ranges of road
congestion, partial obstruction of roadways, diverse uses of
lanes, individual and group driving behavior patterns, and
varying TV characteristics.

Each driving scenario is scanned in an egocentric view,
where all the entities within the local environment of the
EV are sampled. The local environment is bounded by the
detection range of 100m from the center of gravity of the
EV, which results in the environment length lo,, = 2 X
100m = 200m. As the width of the two lanes on the
highway is 3.5m, the width of the sampled environment is
Weny = 2 X 3.5m = Tm. The size of the grid cells is set to
leen = 0.5m and weeyp = 0.25m, yielding a rectangular grid
with the shape G € R*%%%28 During the simulation, objects
on the road may enter or leave the detection zone freely.
Tracking the local environment of a particular vehicle instead
of simulating a stationary sensor is advantageous considering
that the EV can only measure in an egocentric reference frame
as well. We process the raw position, velocity, and orientation
measurements from the simulation into an OG of binary
values, describing minimum bounding boxes as the output of
the object tracking algorithm in [4], in MATLAB ®. However,
we do not consider any sensor noise in the measurements used
to construct the training data sets, as we aim to train prediction
models with a high accuracy.

Every scenario is recorded for 72s at a sampling rate of
% = 5 Hz, which yields a total of 62 x 72s = 4464s of
collected data. The 62 sequences are then partitioned into 9
segments of (M + N)T = 8s each, where the first M - T =
4 s are used to initialize the prediction model and the remaining
N - T = 4s are employed as the ground truth labels during
training. The total 62 x 9 = 558 sequence samples are further
split randomly into a training data set, which contains 80%
of the sequence samples (447 samples), a validation data set,
composed by 10% of the sequence samples (56 samples), and
a test data set with the remaining 10% (55 samples).

B. Multi-step Grid Prediction Models

The input to the SMPC controller is a series of N OGs
that indicate the locations of vehicles for N time steps into
the future. One approach is to train a neural network to
directly output these OGs based on a time series of OGs as
an input. At the core this is a computer vision problem. The
network needs to detect the vehicles in the input sequence
purely based on visual data, such that it can subsequently
predict their behavior in the future. As explained in II-A,
RNNs using LSTM cells are a prominent method for time

series understanding. However, the standard LSTM cell is
not well suited for image data, as it does not take advantage
of the spatial dependencies of an image. In [11], Shi et
al. propose an extension to the LSTM, the convolutional
Long Short Term memory (ConvLSTM). ConvLSTMs
conduct convolution operations at the input and hidden
state terminals. This enables understanding of local spatio-
temporal correlations in the input image, which is crucial
for identifying objects and their movement in a sequence
of images. In this work we present two neural network
architectures based on ConvLSTMs, similar to [6]. We now
present a brief overview of the implemented NN architectures.

1) The OGs derived from the perception system have a high
degree of regularity, the vehicles, although of different sizes,
all have a rectangular shape. Furthermore, in all scenarios,
a significant amount of the image is black and there is
always a high contrast between the vehicles and the street.
Therefore, at the input of the network we embed the OGs into
a different feature space. In computer vision this is normally
done using convolutional layers. As described by LeCun et
al. in [12], they can filter out different aspects of the image,
while retaining spatial relations. In the proposed network, there
are two convolutional layers that project the images into a
latent feature space. The input of the network is a tensor with
shape RMx400x28x1 The two convolutional layers project
the input images from the shape R400%28%1 o R200x28x4
Convolutions are applied to each time-step separately so that
the resulting output is RM*400x28x4 "1y the next stage there
are two layers of bidirectional ConvLSTMs. The first layer
takes an input tensor of size RM*200x28x4 and outputs a
tensor of size RM*200x28x10 which serves as an input to the
second ConvLSTM. The second ConvLSTM layer not only
takes the output and hidden states of the first ConvLSTM
layer, but also its internal state. Therefore, the second layer has
access to an encoded representation of the input sequence and,
based on that, can now predict the next N time steps into the
future. The output tensor of the second layer is again a tensor
of the size RN *200x28x10 "which then feeds into a transposed
convolutional layer, which reconstructs the initial shape of the
OGs and therefore outputs a tensor of size R *X400x28x1 Thig
output represents a prediction for the next IV time steps into
the future.

2) The second network has a very similar structure to the first.
Again, the input is a tensor of shape R *400x28x1 "which is
projected onto RMx100x28x8 hy the first two convolutional
layers. The output is then fed into a bidirectional ConvLSTM
that encodes the input sequence. Importantly, the first LSTM
layer does not share its internal state with the second layer. The
output of the second layer is a tensor of size RM *100x28x10,
which then again is fed into the transposed convolution layer
to get an output of size RM*400x28x1 n contrast to the first
network only the last element of this tensor is treated as the
output of the network. Therefore, inference has to be repeated
N times, with an updated input sequence, in every iteration.
For regularization and Monte Carlo Dropout (explained in the

next section), we introduce a 2D dropout layer after the first
and second layer as well as after the second ConvLSTM layer.

Since the data format is an OG of binary values, the network
output has to be restricted to the interval [0, 1], where R is the
number of responses. Therefore, we apply a clipped Rectified
Linear Unit (ReLU) oreru w% — [0, 1]% to the vector of
activations © = [z, .. € RR of the last layer, where
we define the element -wise chpped ReLU as

0, ifxz, <O,
oreLu(®), =z, if0<m, <1, (10)
1, ifz.>1,

where » = 1,..., R is the r-th response.

Network 1 (III-B) is trained with an input sequence of
length M, the target sequence are the /N subsequent time steps.
Model 2 (III-B) is trained with an input sequence of length M
to predict a target sequence that is shifted by one time step
into the future. Both networks are trained using the Adam
[13] solver. Adam performs a stochastic optimization of the
network parameters based on an error measure given by the
cost function £. Model hyperparameters are tuned using the
iterative Hyperband tuning algorithm [14], which is based on
random search of the parameter space. Compared to random
search, Hyperband tuning provides a speedup, as it employs
early stopping and first trains a large set of models on a
small amount of epochs and then iteratively trains the best
performing models on an increasing amount of epochs. Net 1
and Net 2 are then trained a final time with the best performing
set of hyperparameters. The training is performed on 80
epochs, with a mini-batch size of 5 and an initial learning
rate of 0.00294 for Net 1 and 0.00467 for Net 2. We use early
stopping to terminate the training whenever the generalization
performance does not further improve, which we consider if
the validation loss does not decrease for 7 consecutive epochs.
As loss function we use the mean-squared-error loss Lregr,
given by

(1)

regr: Rzzymr ymr>

m=1r=1

where R is the number of cells in an OG, in our case R =
11200. Therefore, ., .- is the predicted, yy, ,. the ground truth,
r-th pixel in time step m.

C. Chance Constraint Reformulation

In grid-based SMPC, we consider the environment predic-
tions to be uncertain. However, the forecasted OGs are deter-
ministic and do not include any information about the model
uncertainty. Therefore, a stochastic description of the local
environment that additionally models prediction uncertainty is
required. We denominate such a data structure as a Probability

Leny x Wenv

Grid (PG). The PG consists of a grid P € Rl ™ @
of occupancy values p; ; € P that describe the estimated
likelihood of the cell being occupied. To find the values of
the PG, we need to process the raw outputs of the neural
networks to model the uncertainty of the grid predictions at

every prediction step k. There are only few options to obtain
a measure of prediction uncertainty from neural networks.

Bayesian neural networks (BNNs) were specifically in-
vented for estimating prediction uncertainty [15]. However,
the implementation of a BNN is significant overhead as
compared to a standard neural network. Another method for
estimating model uncertainty is the so called Monte Carlo
Dropout (MCD) [16]. The idea behind this technique is to
use dropout layers, not only during training, but also in
inference to randomly change the connections in the network.
Therefore, the MCD introduces a stochastic disturbance into
the predictions. By sampling multiple predictions for the
same input, an estimate for prediction accuracy, as well as
an average prediction can be computed. In [16], Gal et al.
demonstrate that this approach for inference approximates
Bayesian inference in deep Gaussian processes and support
their thesis with a multitude of examples where uncertainty
estimations improve model performance. A major benefit of
this approach is that by averaging model predictions, we can
directly derive predictions that model uncertainty and can
thus be used as a PG in grid-based SMPC. For instance,
regions where the grid prediction model consistently predicts
the same deterministic value (i.e., 0 or 1), are unaffected
by the averaging process. Conversely, areas in which the
prediction model assigns different values each time, are noisy
after the averaging, signaling prediction uncertainty. Hence, in
this work we opted, for implementing MCD in the presented
neural network architectures.

After the computation of the PG, to stochastically model
the territory around the EV at prediction step %k, the SMPC
chance constraint can be reformulated as a linear constraint.
We contemplate the following chance constraint on the set of
admissible EV states =:

Pr (&Y €) > 8.

First, a threshold py, is applied to the grid P to turn it into

Weny

lenv AY
a Binary Grid (BG), represented by B € R * @i, of binary

values
1
bl " = ’
¥ {0’

The threshold parameter py, is tunable and allows to adjust
the risk aversion of the controller: similarly to the probability
level 3, the control behavior becomes more conservative the
higher the risk factor py. In essence, the BG divides the
space into two mutually exclusive and collectively exhaustive
subsets of inadmissible or occupied cells, where b; ; = 1, and
admissible or free cells, which hold the value 0. This way, the
chance constraint (12) can be transformed into a hard state
constraint

12)

if i j > Pths

13
otherwise. (13)

EV —adm

R e Epm, (14)

where Z3™ contains all admissible cells in B and symbol-
izes the admissible space.
Next, a linear subset of (14) can be found to further improve

the performance of the SMPC scheme. In this sense, a method
that relies on Bresenham’s line algorithm is proposed in [3] to
find the maximal convex subset within the admissible space.

Consequently, the convex space extracted from E};dm can be
expressed with a linear inequality, given by
Azafeggv < bzafe, (15)

with A5 € R*** and b ¢ R*. The resulting constraint
is tractable and reduces the computational cost of the SMPC
trajectory planning method significantly, as this procedure is
repeated at every prediction step k. Finally, (15) is used as
constraint (8f) in the grid-based SMPC OCP, thus completing
the proposed method

IV. RESULTS

In this section, we evaluate the proposed control framework.
First, we present the general simulation setup and the driving
scenario where the controller is tested. Then, we analyze
the performance of the different grid prediction models and
explore the performance of the closed SMPC control loop in
the driving scenario. Lastly, the results are discussed at the
end of the section.

A. Simulation Setup

The proposed grid-based SMPC method with an integrated
deep learning grid prediction module, which can either be
executed as Model 1 or Model 2 from Section III-B, is
evaluated in a simulation framework developed in MATLAB ©,
Python, and SUMO. Figure 2 depicts the outline of the general
simulation framework.

A simulation of a road scenario is conducted in SUMO,
where the interactions between the traffic participants can
be evaluated step-wise at a microscopic level, meaning that
the dynamics of every single vehicle are modeled individu-
ally [10]. The EV is controlled externally from a MATLAB ®
client, where SUMO is run as a server. The computed optimal
inputs u) are applied to the simulation with the discretized EV
system model presented in Section 4 as 52_]1 =f (BV u;‘;)
Then, the EV state 55}:1 for simulation step ¢ + 1 is updated
in SUMO and the traffic simulation advances one step to
simulation instance ¢ + 1. There, SUMO produces the states
531’17 of all 7 = 1,...7 TVs in the simulation scenario,
simulating real-life driving behaviors and interactions.

Next, the states of the TVs are measured and an OG is
constructed. While we directly obtain the data from the simula-
tion, we simulate the process that would occur in the dynamic
object tracking approach from [4]. Then, the obtained OG is
used in the evidence sequence containing M observations used
to initialize the grid prediction models.

Subsequently, one of the two presented multi-step grid
prediction methods is used to predict the future motion of the
dynamic objects in the surroundings of the EV for prediction
steps k = 1,...,N. The PG sequence {Pi,...,Pn} is
derived from the forecasts to be used in the grid-based SMPC
trajectory planning scheme. The predictors are implemented,

Multi-step grid prediction

PG sequence PG < Model 1 Evidence sequence
{P1,...,Pn} derivation {X1,..., Xu}
'(PG < Model 2 W
Grid-Based SMPC derivation ode Environment Estimation
Extract BG Dynamic object tracking
v L3
Compute SMPC trajectory K K
EV _ Simulation Next measurement ¢ + 1
& k=1,...,N

Apply EV control
€Y, = 1 (€ uj) 3
i 4

Interactions in SUMO

TV, T _
&7 =1...T

Fig. 2: Simulation framework outline. Starting at the container at the bottom, a simulation of a traffic scenario is conducted
in SUMO, where the EV is controlled externally. At each simulation step, a sequence of past observations is constructed in
the environment estimation module (container to the right) from the information in the simulation. In the upper container, the
multi-step grid prediction module produces a sequence of PGs either with a classification or a regression network. The PGs

are then used in the grid-based SMPC (container to the left) to calculate the optimal trajectory.

TABLE I: Simulation parameters.

scalars vectors matrices

Wiane=3.5 Umin = [—3, 5] Q = diag(0,0.25,0.2, 10)
lgy = 4.3 Umax = [3,5] 7 R = diag(5,0.33)

wgy = 1.8 S = diag(15,0.33)
lf=10=138

Umin = 0

Umax = 30.55

Ymin = 1

Ymax = 6

trained, and evaluated in Python, using the popular model-level
library Keras [17] with the TensorFlow [18] backend.
The relevant simulation parameters are shown in Table I.

B. Driving Scenario

We design a two-lane highway scenario with an initial
configuration that is not found in the training data. Since we
first need to generate a sequence of M = 20 OGs to initialize
the grid prediction models, we let the simulation run controlled
by SUMO for 20 steps before we start the control framework.
At this time instant, the initial setup of the the vehicles on the
grid can be found in Table II.

C. Evaluation

We first evaluate the presented grid prediction models with
and without MCD on the test data set. Then, we tune the
SMPC probability threshold py,. Finally, the overall grid-based
SMPC framework is assessed in the previously described sim-
ulation of a driving scenario. For a comprehensive assessment
of predictor performance we will consider multiple metrics. As

TABLE II: Vehicle states at the start of the simulation. We
consider the longitudinal position z, the lateral position y, the
longitudinal velocity v,;, and the lateral velocity v,,.

Vehicle =z Yy Vg Uy
EV 8228 175 263 0
TV1 11250 525 27 0
TV2 13930 175 24 0
TV3 15582 525 28 0

a general metric of prediction accuracy we could use the Mean
Squared Error (MSE), however, for our problem MSE only
illustrates part of the picture. There are different implications
for errors in controller predictions, depending on whether the
prediction failed to indicate that a cell is occupied (false
negative) or it indicated a cell that is not occupied as occupied
(false positive). A false negative poses a potential safety risk,
as the SMPC controller might drive more aggressively because
of too weak constraints. False positives on the other hand, pose
less of a safety risk, but might decrease controller performance
because they indicate tighter constraints than necessary. We
therefore borrow metrics from classification

n

1 TPy ;
Precisi = - E —_— 16
recisiony 02 TPy + FPy. (16)
1 TPy ;
Recall, = -y —— &t (17)
n = TPy i + FNg ;
2 «~ Precisiony, ; - Recally, ;
Fi, =~ —— ul (18)
n Precisiony, ; + Recally, ;

=0

1 : : : :
091 J
2
§ 0.8 1
3
gort 1
O Model 1
0.6F e Model 1 with MCD il
| |—A— Model 2
—%— Model 2 with MCD
0.5 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Pth
(a) Recall scores at prediction step k = 20.
0.9
0.8 1
o
—-
Q
@
]
S 071 1
w0
s
— >
[
—6— Model 1
067 ——+— Model 1 with MCD | |
s Model 2
—¢— Model 2 with MCD
05 . . : :
0 0.2 0.4 0.6 0.8 1
Pth
(b) Precision scores at prediction step k = 20.
0.85 " " —©— Model 1
——— Model 1 with MCD
L —A—— Model 2
08 —s— Model 2 with MCD
© 0.75F i
Q
@
= 07t .
0.65 1
06 : : : :
0 0.2 0.4 0.6 0.8 1

Pth
(c) Fy scores at prediction step k = 20.

Fig. 3: Accuracy scores of all grid prediction models at the
fixed prediction step k£ = 20 for different values of py,.

where ¢ is the index of the test example and n is the total
number of samples in the test data set. This means, TPy, ; is
the number of true positives in time step k of test example <.
Respectively, FP; ; is the number of false positives and FNy, ;
is the number of false negatives. These metrics are computed

1
0.95 L
o 09
-
]
%
= 0.85
<
3
= 08
O Model 1
—4— Model 1 with MCD
0.75 F | —A— Model 2 N
= Model 2 with MCD
0.7 1 1 1
5 10 15 20
Prediction step k
(a) Optimal recall scores over time.
1
0.95
.‘
}.
© 0.9 s
]
O
2 0.85
=
2
45 08 i
&
B 0.75 F [—— Model 1
—— Model 1 with MCD
0.7 i Model 2
—— Model 2 with MCD A
0.65 : : :
5 10 15 20
Prediction step k
(b) Optimal precision scores over time.
£
Qo
%
e

—6— Model 1
——— Model 1 with MCD
s Model 2
~———— Model 2 with MCD

0.65 * : :
5 10 15 20

Prediction step k

(c) Optimal F; scores over time.

Fig. 4: Accuracy scores of all grid prediction models over the
prediction horizon. The values of py, are selected for each
prediction model individually, according to the optimal values
in Table III.

on the predicted frames after they have been converted to
BGs, as described in III-C, using the tunable threshold py,.
Here positives refer to occupied cells and negatives refer to

unoccupied cells. It is conceivable that there might be frames
where (TPk,i + FP;CJ‘) =0 or (TPk,i + FN]gﬂ‘) = 0. In these
cases we assign Recally, ; = 0 if FP;, ; # O, Precision;; = 0
if FNy ; # 0 and Recally ; = 1 if FP; ; = 0, Precisiony, ; = 1
if FNy ; = 0.

Based on these evaluation metrics, we first tune the prob-
ability threshold py, for all four predictor models at k£ = 20,
as we want to have robust long-term predictions. With this
parameter set, we can the evaluate the performance of the
different predictors over time.

Figure 3 shows the scores of the four predictors plotted
over py. In these figures we can identify the expected trend
of recall decreasing with increasing probability threshold, as
the criterion for a cell to be accepted as positive increases.
Conversely, precision increases, as the criterion for a cell to
be accepted as unoccupied decreases leading to less false
positives. Striking is the curve of Model 2 which does not
show a trend in any of the three plots. This seems to indicate
that Model 2 is relatively unaffected by py,. This behavior can
be explained by the fact that Model 2 (compared to the other
predictors), generates very crisp predictions with values either
very close to O or to 1, therefore, it is reasonable to assume that
the probability threshold would have a negligible effect here.
Other than that we can see that the models generally produce
good results, especially considering that this is the twentieth
time step. These diagrams can now be used to select a py, that
gives a good compromise between specificity and safety. An
optimal choice for the threshold based on the different scores
can be seen in Table III.

In Figure 4 we show the scores of the different models for
N = 20 with py, chosen according to the best value for each
metric. We can see that all scores stay generally high over the
entire prediction horizon, with an exception of model 2 which
shows a significant decrease in both precision and recall with
increasing k. However, we see that MCD can significantly
improve the performance of this model accross all metrics.
Conversely, we can see that MCD apparently does not have
a strong effect on the performance of Model 1. We suspect
this might be because, upon closer inspection, the predictions
by Model 1 are already somewhat blurry with increasing time
step k, therefore MCD presumably does not exhibit such a big
effect. By either choosing py, according to precision, recall or
F; score, we could now tune the model to be more aggressive,
safe or a balance between both.

We test the overall control method exemplarily on Model 2
in the previously described driving scenario with three TVs.
The experiment is run on a laptop with an Intel ® i5 processor
(1.60 GHz) and 8 GB of RAM. The mean computation time
per iteration of the algorithm (including all interfaces between
Python and MATLAB® and the simulation in SUMO) is
p = 1.3867s, and the standard deviation o = 0.3821s. The
EV remains faster than the TV that is located in front on the
same lane (TV2). Thus, the gap reduces until EV changes to
the left lane and proceeds to perform a successful overtaking
maneuver.

TABLE III: Optimal values for the probability threshold py,
for each prediction model, based on different scores (recall,
precision, and Fy).

Prediction model Optimal pg, based on score

Recall Precision F;
Model 1 0.05 0.90 0.35
Model 1 with MCD 0.05 0.60 0.40
Model 2 0.05 0.80 0.30
Model 2 with MCD 0.05 0.90 0.45

D. Discussion

The risk parameter py, plays an essential role in SMPC.
A higher value of pg, causes less grid cells to be regarded as
occupied. Only the cells that the prediction model considers to
be occupied with a high degree of certainty can remain above
pw- Thus, the admissible space becomes larger with a rising py,
and the behavior of the controller proves more aggressive. In
the same way, low values of py, result in a more conservative
driving behavior.

Tuning the parameter py, during control design requires a
compromise between aggressiveness and conservatism. When
aiming for a conservative control behavior, we need to ensure
that the recall score of the PG is as high as possible to
minimize false negatives. Likewise, the precision score of
the PG needs to remain as high as possible to avoid false
positives and achieve an aggressive control behavior. If, on
the other hand, a balanced driving behavior is desired, the F
score is a good trade-off. Therefore, we find the values for the
probability level py, that are optimal for each case and each
grid prediction model (see Table III) and suggest their use,
depending on the pursued vehicle behavior.

The high computational cost of the developed approach is
mainly due to the nonlinear EV model used for the OCP and
the followed MCD approach, which requires to repeat the
inference procedure multiple times. Hence, the computational
complexity of the control method can be further reduced by
two strategies. First, the EV prediction model can be linearized
for a faster OCP. Second, we can either decrease the number
of iterations of the MCD procedure at the cost of a worse
uncertainty estimation and reduced recall score, or implement
BNN:Es.

V. CONCLUSION

In this work, we have developed an approach to couple
the grid-based SMPC framework for trajectory planning in
automated driving with RNN-based multi-step grid prediction
models. We make use of Monte Carlo dropout during inference
to model the stochastic uncertainty, which is introduced by the
dynamic objects around the controlled vehicle. The method
handles complex driving scenarios with different types of
vehicles and maneuvers effectively. It is still of interest to
evaluate the scalability of the method in urban and real-life

situations, as well as applying bayesian neural networks for
faster forecasts with uncertainty estimation.

[1]

[2]

[3]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

REFERENCES

A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems, vol. 36, no. 6,
pp. 30-44, 2016.

A. M. Carvalho, “Predictive control under uncertainty for safe au-
tonomous driving: Integrating data-driven forecasts with control design,”
2016.

T. Briidigam, F. Di Luzio, L. Pallottino, D. Wollherr, and M. Leibold,
“Grid-based stochastic model predictive control for trajectory planning
in uncertain environments,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), pp. 1-8, IEEE, 2020.

S. Steyer, G. Tanzmeister, and D. Wollherr, “Object tracking based on
evidential dynamic occupancy grids in urban environments,” in 2017
IEEE Intelligent Vehicles Symposium (IV), pp. 1064-1070, IEEE, 2017.
S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via Istm encoder-
decoder architecture,” in 2018 IEEE Intelligent Vehicles Symposium (IV),
pp. 1672-1678, 2018.

M. Schreiber, S. Hormann, and K. Dietmayer, “Long-term occupancy
grid prediction using recurrent neural networks,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 9299-9305, IEEE,
2019.

N. Mohajerin and M. Rohani, “Multi-step prediction of occupancy grid
maps with recurrent neural networks,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos,
CA, USA), pp. 10592-10600, IEEE Computer Society, 2019.

S. Hormann, M. Bach, and K. Dietmayer, “Dynamic occupancy grid
prediction for urban autonomous driving: A deep learning approach
with fully automatic labeling,” Computing Research Repository (CoRR),
2017.

A. Sherstinsky, “Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,” Physica D: Nonlinear
Phenomena, vol. 404, no. 8, p. 132306, 2020.

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,
R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. WieBner, “Micro-
scopic traffic simulation using sumo,” in The 21st IEEE International
Conference on Intelligent Transportation Systems, pp. 2575-2582, IEEE,
November 2018.

X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo, “Convo-
lutional LSTM network: A machine learning approach for precipitation
nowcasting,” Computing Research Repository (CoRR), 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, vol. 3, 2014.
L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, no. 185,
pp. 1-52, 2018.

L. V. Jospin, W. L. Buntine, F. Boussaid, H. Laga, and M. Bennamoun,
“Hands-on bayesian neural networks - a tutorial for deep learning users,”
CoRR, vol. abs/2007.06823, 2020.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” Proceedings of The
33rd International Conference on Machine Learning, 06 2015.

F. Chollet et al., “Keras,” 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

